山东聊城市阳谷实验中学2022年数学九年级第一学期期末预测试题含解析_第1页
山东聊城市阳谷实验中学2022年数学九年级第一学期期末预测试题含解析_第2页
山东聊城市阳谷实验中学2022年数学九年级第一学期期末预测试题含解析_第3页
山东聊城市阳谷实验中学2022年数学九年级第一学期期末预测试题含解析_第4页
山东聊城市阳谷实验中学2022年数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m2.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60° B.90° C.120° D.180°3.一个扇形的半径为4,弧长为,其圆心角度数是()A. B. C. D.4.关于的一元二次方程有一个根是﹣1,若二次函数的图象的顶点在第一象限,设,则的取值范围是()A. B. C. D.5.如图,菱形中,过顶点作交对角线于点,已知,则的大小为()A. B. C. D.6.若反比例函数的图象经过点,则这个函数的图象一定还经过点()A. B. C. D.7.若点(x1,y1),(x2,y2),(x3,y3)都在反比例函数的图象上,并且x10x2x3,则下列各式中正确的是()A.y1y2y3 B.y3y2y1 C.y2y3y1 D.y1y3y28.在正方形网格中,如图放置,则()A. B. C. D.9.函数中,自变量的取值范围是()A. B. C. D.x≤1或x≠010.如图1,S是矩形ABCD的AD边上一点,点E以每秒kcm的速度沿折线BS-SD-DC匀速运动,同时点F从点C出发点,以每秒1cm的速度沿边CB匀速运动.已知点F运动到点B时,点E也恰好运动到点C,此时动点E,F同时停止运动.设点E,F出发t秒时,△EBF的面积为.已知y与t的函数图像如图2所示.其中曲线OM,NP为两段抛物线,MN为线段.则下列说法:①点E运动到点S时,用了2.5秒,运动到点D时共用了4秒;②矩形ABCD的两邻边长为BC=6cm,CD=4cm;③sin∠ABS=;④点E的运动速度为每秒2cm.其中正确的是()A.①②③ B.①③④ C.①②④ D.②③④二、填空题(每小题3分,共24分)11.正五边形的中心角的度数是_____.12.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.13.如图,AB是⊙O的直径,CD是⊙O的弦,∠DCB=32°.则∠ABD=_____14.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.15.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.16.已知线段厘米,厘米,线段c是线段a和线段b的比例中项,线段c的长度等于________厘米.17.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_____km.18.计算:=________.三、解答题(共66分)19.(10分)在推进城乡生活垃圾分类的行动中,某校数学兴趣小组为了了解居民掌握垃圾分类知识的情况,对两小区各600名居民进行测试,从中各随机抽取50名居民成绩进行整理得到部分信息:(信息一)小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)上图中,从左往右第四组成绩如下:75777779797980808182828383848484(信息三)两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差75.1___________7940%27775.1777645%211根据以上信息,回答下列问题:(1)求小区50名居民成绩的中位数;(2)请估计小区600名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析两小区参加测试的居民掌握垃圾分类知识的情况.20.(6分)如图,是⊙的直径,弦,垂足为,连接.过上一点作交的延长线于点,连接交于点,且.(1)求证:是⊙的切线;(2)延长交的延长线于点,若,,求的长.21.(6分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?22.(8分)一个不透明袋子中有个红球,个绿球和个白球,这些球除颜色外无其他差别,当时,从袋中随机摸出个球,摸到红球和摸到白球的可能性(填“相同”或“不相同”);从袋中随机摸出一个球,记录其颜色,然后放回,大量重复该实验,发现摸到绿球的频率稳定于,则的值是;在的情况下,如果一次摸出两个球,请用树状图或列表法求摸出的两个球颜色不同的概率.23.(8分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.24.(8分)某批发商以50元/千克的成本价购入了某产品800千克,他随时都能一次性卖出这种产品,但考虑到在不同的日期市场售价都不一样,为了能把握好最恰当的销售时机,该批发商查阅了上年度同期的经销数据,发现:①如果将这批产品保存5天时卖出,销售价为80元;②如果将这批产品保存10天时卖出,销售价为90元;③该产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系;④这种产品平均每天将损耗10千克,且最多保存15天;⑤每天保存产品的费用为100元.根据上述信息,请你帮该批发商确定在哪一天一次性卖出这批产品能获取最大利润,并求出这个最大利润.25.(10分)如图,在中,,为边上的中线,于点(1)求证:BD·AD=DE·AC.(2)若AB=13,BC=10,求线段DE的长.(3)在(2)的条件下,求的值.26.(10分)如图1,内接于,AD是直径,的平分线交BD于H,交于点C,连接DC并延长,交AB的延长线于点E.(1)求证:;(2)若,求的值(3)如图2,连接CB并延长,交DA的延长线于点F,若,求的面积.

参考答案一、选择题(每小题3分,共30分)1、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【详解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.2、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,根据圆锥侧面积恰好等于底面积的3倍可得3πr2=πrR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120°.故选C.考点:有关扇形和圆锥的相关计算3、C【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为,∴解得:,即其圆心角度数是故选C.【点睛】此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.4、D【分析】二次函数的图象过点,则,而,则,,二次函数的图象的顶点在第一象限,则,,即可求解.【详解】∵关于的一元二次方程有一个根是﹣1,∴二次函数的图象过点,∴,∴,,则,,∵二次函数的图象的顶点在第一象限,∴,,将,代入上式得:,解得:,,解得:或,故:,故选D.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用5、D【分析】先说明ABD=∠ADC=∠CBD,然后再利用三角形内角和180°求出即可∠CBD度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理.6、A【分析】根据反比例函数的定义,得,分别判断各点的乘积是否等于,即可得到答案.【详解】解:∵反比例函数的图象经过点,∴;∵,故A符合题意;∵,,,故B、C、D不符合题意;故选:A.【点睛】本题考查了反比例函数的定义,解题的关键是熟记定义,熟练掌握.7、D【分析】由题意先根据反比例函数的解析式判断出函数图象所在象限,再根据题意即可得出结论.【详解】解:∵反比例函数中k=3>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小;∵x1<0<x2<x3,∴y1<y3<y2,故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟练掌握反比例函数图象上各点的坐标是解题的关键.8、B【分析】依据正切函数的定义:正切函数是直角三角形中,对边与邻边的比值叫做正切.由中,,求解可得.【详解】解:在中,,,则,故选:B.【点睛】本题主要考查解直角三角形,解题的关键是掌握正切函数的定义.9、D【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【详解】根据题意得,且,

解得:且.

故选:D.【点睛】本题考查求函数的自变量的取值范围,函数自变量的范围一般从三个方面考虑:①当函数表达式是整式时,自变量可取全体实数;②当函数表达式是分式时,考虑分式的分母不能为0;③当函数表达式是二次根式时,被开方数非负.10、C【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设,,由函数图像利用△EBF面积列出方程组即可解决问题.③由,,得,设,,在中,由列出方程求出,即可判断.④求出即可解决问题.【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点运动到点时用了2.5秒,运动到点时共用了4秒.故①正确.设,,由题意,解得,所以,,故②正确,,,,设,,在中,,,解得或(舍,,,,故③错误,,,,故④正确,故选:C.【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.二、填空题(每小题3分,共24分)11、72°.【分析】根据正多边形的圆心角定义可知:正n边形的圆中心角为,则代入求解即可.【详解】解:正五边形的中心角为:.故答案为72°.【点睛】此题考查了正多边形的中心角的知识.题目比较简单,注意熟记定义.12、.【解析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.13、58°【解析】根据圆周角定理得到∠BAD=∠BCD=32°,∠ADB=90°,根据互余的概念计算即可.【详解】由圆周角定理得,∠BAD=∠BCD=32°,∵AB为⊙O的直径,∴∴故答案为【点睛】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等.14、﹣1【分析】由根与系数的关系可求得a+b与ab的值,代入求值即可.【详解】∵a,b是方程x2+x﹣2018=0的两个实数根,∴a+b=﹣1,ab=﹣2018,∴(a﹣1)(b﹣1)=ab﹣a﹣b+1=ab﹣(a+b)+1=﹣2018﹣(﹣1)+1=﹣1,故答案为﹣1.【点睛】本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于﹣、两根之积等于是解题的关键.15、【解析】过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.16、1【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【详解】∵线段c是线段a和线段b的比例中项,∴,解得(线段是正数,负值舍去),∴,故答案为:1.【点睛】本题考查比例线段、比例中项等知识,比例中项的平方等于两条线段的乘积,熟练掌握基本概念是解题关键.17、58【解析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案.【详解】设A.B两地的实际距离是x厘米,∵比例尺为1:1000000,A.B两地的图上距离是5.8厘米,∴1:1000000=5.8:x,解得:x=5800000,∵5800000厘米=58千米,∴A、B两地的实际距离是58千米.故答案为58.【点睛】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.18、-1【分析】根据零指数幂及特殊角的三角函数值计算即可.【详解】解:原式=1-4×=-1,故答案为:-1.【点睛】本题考查了实数的运算、零指数幂、特殊角的三角函数值,属于基础题,解答本题的关键是熟练每部分的运算法则.三、解答题(共66分)19、(1)76;(2)300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数【分析】(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值,所以中位数落在第四组,再根据信息二中的表格数据可得出结果;

(2)先求出A小区超过平均数的人数,即(16-1)+10=25(人),再根据小区600名居民成绩能超过平均数的人数=600×,即可得出结果;

(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.【详解】解:(1)因为有50名居民,中位数应为第25名和第26名成绩的平均值.而前三组的总人数为:4+8+12=24(人),所以中位数落在第四组,第25名的成绩为75分,第26名的成绩为77分,所以中位数为76,故答案为:76;(2)根据题意得,600×=300(人),答:A小区600名居民成绩能超过平均数的人数300人;(3)从平均数看,两个小区居民对垃圾分类知识掌握情况的平均水平相同;从方差看,B小区居民对垃圾分类知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.(答案不唯一,合理即可;)【点睛】本题考查的是条形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20、(1)见解析(2)【分析】(1)连接,由,推,证,得,根据切线判定定理可得;(2)连接,设⊙的半径为,则,,在中,求得,在中,求得,由,证,得,即,可求OM.【详解】(1)证明:连接,如图,∵,∴,而,∴,∵,∴,∴,∵,∴,∴,即,∴,∴是⊙的切线;(2)解:连接,如图,设⊙的半径为,则,,在中,,解得,在中,,∵,∴,∴,∴,即,∴.【点睛】考核知识点:切线判定,相似三角形判定和性质.理解切线判定和相似三角形判定是关键.21、(1)y=﹣2x+200(40≤x≤60);(2)售价为60元时获得最大利润,最大利润是1600元.【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式,将其配方成顶点式即可得最值情况.【详解】解:(1)设y=kx+b,将(50,100)、(60,80)代入,得:,解得:,∴y=﹣2x+200(40≤x≤60);(2)w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵40≤x≤60,∴当x=60时,w取得最大值为1600,答:w与x之间的函数表达式为W=﹣2x2+280x﹣8000,售价为60元时获得最大利润,最大利润是1600元.【点睛】本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及二次函数的性质.22、(1)相同;(2)2;(3).【分析】(1)确定摸到红球的概率和摸到白球的概率,比较后即可得到答案;(2)根据频率即可计算得出n的值;(3)画树状图即可解答.【详解】(1)当n=1时,袋子中共3个球,∵摸到红球的概率为,摸到白球的概率为,∵摸到红球和摸到白球的可能性相同,故答案为:相同;(2)由题意得:,得n=2,故答案为:2;(3)树状图如下:根据树状图呈现的结果可得:(摸出的两个球颜色不同)【点睛】此题考查事件的概率,确定事件可能发生的所有情况机会应是均等的,某事件发生的次数,即可代入公式求出事件的概率.23、(1)详见解析;(2).【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B、C,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:.考点:列表法与树状图法.24、保存15天时一次性卖出能获取最大利润,最大利润为23500元【分析】根据题意求出产品的销售价y(元/千克)与保存时间x(天)之间是一次函数关系y=2x+1,根据利润=售价×销售量-保管费-成本,可利用配方法求出最大利润.【详解】解:由题意可求得y=2x+1.设保存x天时一次性卖出这批产品所获得的利润为w元,则w=(800-10x)(2x+1)-100x-50×800=-20x2+800x+16000=-20(x-20)2+24000∵0<x≤15,∴x=15时,w最大=23500答:保存15天时一次性卖出能获取最大利润,最大利润为23500元.【点睛】此题主要考查了二次函数在实际生活中的应用,熟练掌握将实际生活中的问题转化为二次函数是解题的关键.25、(1)见解析;(2);(3).【分析】(1)先利用等腰三角形的性质证明∠B=∠C,AD⊥BC,然后再证明△BDE∽△CAD即可;(2)利用勾股定理求出AD,再根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论