版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离 B.相切 C.相交 D.无法判断2.下列命题中,不正确的是()A.对角线相等的矩形是正方形 B.对角线垂直平分的四边形是菱形C.矩形的对角线平分且相等 D.顺次连结菱形各边中点所得的四边形是矩形3.在一个不透明的口袋中装有3个红球和2个白球,它们除颜色不同外,其余均相同.把它们搅匀后从中任意摸出1个球,则摸到红球的概率是()A. B. C. D.4.下列命题错误的是()A.对角线互相垂直平分的四边形是菱形B.一组对边平行,一组对角相等的四边形是平行四边形C.矩形的对角线相等D.对角线相等的四边形是矩形5.如图,内接于⊙,是⊙的直径,,点是弧上一点,连接,则的度数是()A.50° B.45° C.40° D.35°6.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是;④四边形ACEB的面积是1.则以上结论正确的是()A.①② B.②④ C.①②③ D.①③④7.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A. B. C. D.8.在△ABC中,∠C=90°,AC=9,sinB=,则AB=(
)A.15
B.12
C.9
D.69.如图,的外切正六边形的边长为2,则图中阴影部分的面积为()A. B. C. D.10.如图,在⊙O中,弦BC=1,点A是圆上一点,且∠BAC=30°,则的长是()A.π B. C. D.二、填空题(每小题3分,共24分)11.如图,正五边形内接于,为上一点,连接,则的度数为__________.12.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是___.13.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a,第二次出现的点数记为b.那么方程有解的概率是__________。14.已知直线y=kx(k≠0)与反比例函数y=﹣的图象交于点A(x₁,y₁),B(x₂,y₂)则2x₁y₂+x₂y₁的值是_____.15.如图,二次函数的图象与x轴交于A,B两点,与y轴交于点C,对称轴与x轴交于点D,若点P为y轴上的一个动点,连接PD,则的最小值为________.16.请你写出一个函数,使它的图象与直线无公共点,这个函数的表达式为_________.17.抛物线在对称轴左侧的部分是上升的,那么的取值范围是____________.18.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.三、解答题(共66分)19.(10分)甲口袋中装有两个相同的小球,它们分别写有1和2;乙口袋中装有三个相同的小球,它们分别写有3、4和5;丙口袋中装有两个相同的小球,它们分别写有6和1.从这3个口袋中各随机地取出1个小球.(1)取出的3个小球上恰好有两个偶数的概率是多少?(2)取出的3个小球上全是奇数的概率是多少?20.(6分)一张长为30cm,宽20cm的矩形纸片,如图1所示,将这张纸片的四个角各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图1所示,如果折成的长方体纸盒的底面积为264cm2,求剪掉的正方形纸片的边长.21.(6分)一个不透明的布袋里有材质、形状、大小完全相同的4个小球,它们的表面分别印有1、2、3、4四个数字(每个小球只印有一个数字),小华从布袋里随机摸出一个小球,把该小球上的数字记为,小刚从剩下的3个小球中随机摸出一个小球,把该小球上的数字记为.(1)若小华摸出的小球上的数字是2,求小刚摸出的小球上的数字是3的概率;(2)利用画树状图或列表格的方法,求点在函数的图象上的概率.22.(8分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?23.(8分)已知二次函数的图像经过点A(0,3),B(-1,0).(1)求该二次函数的解析式(2)在图中画出该函数的图象24.(8分)在一次徒步活动中,有甲、乙两支徒步队伍.队伍甲由A地步行到B地后按原路返回,队伍乙由A地步行经B地继续前行到C地后按原路返回,甲、乙两支队伍同时出发.设步行时间为x(分钟),甲、乙两支队伍距B地的距离为y1(千米)和y2(千米).(甲、乙两队始终保持匀速运动)图中的折线分别表示y1、y2与x之间的函数关系,请你结合所给的信息回答下列问题:(1)A、B两地之间的距离为千米,B、C两地之间的距离为千米;(2)求队伍乙由A地出发首次到达B地所用的时间,并确定线段MN表示的y2与x的函数关系式;(3)请你直接写出点P的实际意义.25.(10分)已知:如图,在△ABC中,AD是∠BAC的平分线,∠ADE=∠B.求证:(1)△ABD∽△ADE;(2)AD2=AE•AB.26.(10分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)
参考答案一、选择题(每小题3分,共30分)1、C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.2、A【分析】利用矩形的判定、菱形的判定、正方形的判定及平行四边形的判定定理分别进行判定后即可确定正确的选项.【详解】A.对角线相等的菱形是正方形,原选项错误,符合题意;B.对角线垂直平分的平行四边形是菱形,正确,不符合题意;C.正方形的对角线平分且相等,正确,不符合题意;D.顺次连结菱形各边中点所得的四边形是平行四边形,正确,不符合题意;故选A.【点睛】本题考查正方形、矩形、平行四边形、菱形的性质定义,根据其性质对选项进行判断是解题关键.3、D【分析】根据题意即从5个球中摸出一个球,概率为.【详解】摸到红球的概率=,故选:D.【点睛】此题考查事件的简单概率的求法,正确理解题意,明确可能发生的总次数及所求事件发生的次数是求概率的关键.4、D【分析】根据矩形、菱形、平行四边形的知识可判断出各选项,从而得出答案.【详解】A、对角线互相垂直平分的四边形是菱形,命题正确,不符合题意;B、一组对边平行,一组对角相等的四边形是平行四边形,命题正确,不符合题意;C、矩形的对角线相等,命题正确,不符合题意;D、对角线相等的四边形不一定是矩形,例如等腰梯形,故本选项符合题意.故选:D.【点睛】本题主要考查了命题与定理的知识,解答本题的关键是熟练掌握平行四边形、菱形以及矩形的性质,此题难度不大.5、A【分析】根据直径所对的圆周角是直角可知∠ABC=90°,计算出∠BAC的度数,再根据同弧所对的圆周角相等即可得出∠D的度数.【详解】解:∵是⊙的直径,∴∠ABC=90°,又∵,∴∠BAC=90°-40°=50°,又∵∠BAC与所对的弧相等,∴∠D=∠BAC=50°,故答案为A.【点睛】本题考查了直径所对的圆周角是直角、同弧所对圆周角相等等知识点,解题的关键是熟知直径所对的圆周角是直角及同弧所对圆周角相等.6、A【分析】①证明AC∥DE,再由条件CE∥AD,可证明四边形ACED是平行四边形;②根据线段的垂直平分线证明AE=EB,可得△BCE是等腰三角形;③首先利用含30°角的直角三角形计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2;④利用△ACB和△CBE的面积之和,可得四边形ACEB的面积.【详解】解:①∵∠ACB=90°,DE⊥BC,
∴∠ACD=∠CDE=90°,
∴AC∥DE,
∵CE∥AD,
∴四边形ACED是平行四边形,故①正确;
②∵D是BC的中点,DE⊥BC,
∴EC=EB,
∴△BCE是等腰三角形,故②正确;
③∵AC=2,∠ADC=30°,∴AD=4,CD=∵四边形ACED是平行四边形,
∴CE=AD=4,
∵CE=EB,
∴EB=4,DB=∴CB=∴AB=∴四边形ACEB的周长是10+,故③错误;④四边形ACEB的面积:,故④错误,故选:A.【点睛】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.7、B【解析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=.
故选B.8、A【分析】根据三角函数的定义直接求解.【详解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故选A9、A【分析】由于六边形ABCDEF是正六边形,所以∠AOB=60°,故△OAB是等边三角形,OA=OB=AB=2,设点G为AB与⊙O的切点,连接OG,则OG⊥AB,OG=OA•sin60°,再根据S阴影=S△OAB-S扇形OMN,进而可得出结论.【详解】∵六边形ABCDEF是正六边形,
∴∠AOB=60°,
∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA∙sin60°=2×
=
,
∴S
阴影
=S
△OAB
-S
扇形OMN
=
×2×
-
.
故选A.【点睛】考核知识点:正多边形与圆.熟记扇形面积公式是关键.10、B【解析】连接OB,OC.首先证明△OBC是等边三角形,再利用弧长公式计算即可.【详解】解:连接OB,OC.∵∠BOC=2∠BAC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴的长=,故选B.【点睛】考查弧长公式,等边三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.二、填空题(每小题3分,共24分)11、【分析】连接OA,OE.根据正五边形求出∠AOE的度数,再根据圆的有关性质即可解答【详解】如图,连接OA,OE.∵ABCDE是正五边形,∴∠AOE==72°,∴∠APE=∠AOE=36°【点睛】本题考查了正多边形和圆的有关性质,解题的关键是熟练掌握想关性质并且灵活运用题目的已知条件.12、180°【详解】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S底面面积=πr2,l底面周长=2πr,S扇形=2S底面面积=2πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得2πr2=×2πr×R,故R=2r.由l扇形弧长=得:2πr=解得n=180°.故答案为:180°【点睛】本题考查扇形面积和弧长公式以及圆锥侧面积的计算,掌握相关公式正确计算是解题关键.13、【分析】画树状图展示所有36种等可能的结果数,再找出使,即的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有36种等可能的结果数,其中使,即的有19种,
方程有解的概率是,故答案为:.【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件的结果数目m,然后根据概率公式求出事件的概率.14、1【分析】由于正比例函数和反比例函数图象都是以原点为中心的中心对称图形,因此它们的交点A、B关于原点成中心对称,则有x₂=﹣x₁,y₂=﹣y₁.由A(x₁,y₂)在双曲线y=﹣上可得x₁y₁=﹣5,然后把x₂=﹣x₁,y₂=﹣y₁代入2x₁y₂+x₂y₁的就可解决问题.【详解】解:∵直线y=kx(k>0)与双曲线y=﹣都是以原点为中心的中心对称图形,∴它们的交点A、B关于原点成中心对称,∴x₂=﹣x₁,y₂=﹣y₁.∵A(x₁,y₁)在双曲线y=﹣上,∴x₁y₁=﹣5,∴2x₁y₂+x₂y₁=2x₁(﹣y₁)+(﹣x₁)y₁=﹣3x₁y₁=1.故答案为:1.【点睛】本题主要考查了反比例函数图象上点的坐标特征、正比例函数及反比例函数图象的对称性等知识,得到A、B关于原点成中心对称是解决本题的关键.15、【分析】连接AC,连接CD,过点A作AE⊥CD交于点E,则AE为所求.由锐角三角函数的知识可知PC=PE,然后通过证明△CDO∽△AED,利用相似三角形的性质求解即可.【详解】解:连接AC,连接CD,过点A作AE⊥CD交于点E,则AE为所求.当x=0时,y=3,∴C(0,3).当y=0时,0=-x2+2x+3,∴x1=3,x2=-1,∴A(-1,0)、B(3,0),∴OA=1,OC=3,∴AC=,∵二次函数y=-x2+2x+3的对称轴是直线x=1,∴D(1,0),∴点A与点D关于y轴对称,∴sin∠ACO=,由对称性可知,∠ACO=∠OCD,PA=PD,CD=AC=,∴sin∠OCD=,∵sin∠OCD=,∴PC=PE,∵PA=PD,∴PC+PD=PE+PA,∵∠CDO=∠ADE,∠COD=AED,∴△CDO∽△AED,∴,∴,∴;故答案为.【点睛】本题考查了二次函数的图像与性质,二次函数与坐标轴的交点,锐角三角函数的知识,勾股定理,轴对称的性质,相似三角形的判定与性质等知识,难度较大,属中考压轴题.16、(答案不唯一)【分析】直线经过一三象限,所以只要找到一个过二、四象限的函数即可.【详解】∵直线经过一三象限,图象在二、四象限∴两个函数无公共点故答案为【点睛】本题主要考查正比例函数的图象与性质,掌握正比例函数与反比例函数的图象与性质是解题的关键.17、【分析】利用二次函数的性质得到抛物线开口向下,则a-1<0,然后解不等式即可.【详解】∵抛物线y=(a-1)x1在对称轴左侧的部分是上升的,
∴抛物线开口向下,
∴a-1<0,解得a<1.
故答案为a<1.【点睛】此题考查二次函数图象与系数的关系,解题关键在于掌握二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.18、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.三、解答题(共66分)19、(1);(2).【分析】先画出树状图得到所有等可能的情况数;(1)找出3个小球上恰好有两个偶数的情况数,然后利用概率公式进行计算即可;(2)找出3个小球上全是奇数的情况数,然后利用概率公式进行计算即可.【详解】根据题意,画出如下的“树状图”:从树状图看出,所有可能出现的结果共有12个;(1)取出的3个小球上恰好有两个偶数的结果有4个,即1,4,6;2,3,6;2,4,1;2,5,6;所以(两个偶数);(2)取出的3个小球上全是奇数的结果有2个,即1,3,1;1,5,1;所以,(三个奇数).【点睛】本题考查的是用树状图法求概率;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、4cm【解析】试题分析:设剪掉的正方形纸片的边长为xcm,则围成的长方体纸盒的底面长是(32-2x)cm,宽是(32-2x)cm,根据底面积等于1cm2列方程求解.解:设剪掉的正方形纸片的边长为xcm.由题意,得(32-2x)(22-2x)=1.整理,得x2-25x+84=2.解方程,得,(不符合题意,舍去).答:剪掉的正方形的边长为4cm.21、(1);(2)【分析】(1)根据小刚从印有数字1,3,4的三个小球中摸出印有数字3的小球进行求解概率;(2)根据题意画出树状图,进而求解.【详解】解:(1)由题意知,小刚摸出的小球上的数字是3的概率为;(2)画树状图如下:一共有12种等可能情况,有三种情况满足条件,分别为:,,,∴点在函数的图象上的概率为.【点睛】本题考查等可能条件下的概率计算公式,画树状图或列表求解概率,熟知画树状图或列表法是解题的关键.22、(1)第3档次;(2)第5档次【解析】试题分析:(1)根据生产提高一个档次的蛋糕产品,该产品每件利润增加2元,即可求出每件利润为14元的蛋糕属第几档次产品;(2)设烘焙店生产的是第x档次的产品,根据单件利润×销售数量=总利润,即可得出关于x的一元二次方程,解之即可得出结论.试题解析:(1)(14﹣10)÷2+1=3(档次).答:此批次蛋糕属第3档次产品.(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(舍去).答:该烘焙店生产的是第5档次的产品.考点:一元二次方程的应用.23、(1);(2)详见解析.【分析】(1)根据二次函数的图象经过点A(0,3),B(-1,0)可以求得该函数的解析式;(2)根据(1)中求得的函数解析式可以得到该函数经过的几个点,从而可以画出该函数的图象;【详解】解:(1)把A(0,3),B(-1,0)分别代入,得解得所以二次函数的解析式为:(2)由(1)得列表得:如图即为该函数图像:【点睛】本题考查求抛物线的解析式、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想.24、(1)2;1;(2)线段MN表示的y2与x的函数解析式为y2=x﹣2(20≤x≤60);(3)点P的意义为:当x=分钟时,甲乙距B地都为千米.【分析】(1)当x=0时,y的值即为A、B两地间的距离,观察队伍乙的运动图象可知线段MN段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京市2024年度城市供水排水工程合同
- 二零二四年高档住宅区供暖工程合同2篇
- 简易的材料购销合同
- 2024年度居间介绍工程采购合同3篇
- 商业演出合同范本
- 高铁护坡施工设备租赁2024年度合同
- 《事故树分析方法》课件
- 《市政道路施工概述》课件
- 个人承包合同出租车范本
- 财务人员管理报告范文
- 2024-2034年全球及中国核辐射行业市场发展现状及发展前景研究报告
- 微测网题库完整版行测
- 借款协议书格式模板示例
- 国家开放大学《管理英语4》边学边练Unit 5-8(答案全)
- 作家普希金课件
- 封山育林工程 投标方案(技术方案)
- 当代世界经济与政治 李景治 第八版 课件 第1、2章 当代世界政治、当代世界经济
- 2024年刑法知识考试题库附参考答案【满分必刷】
- 国开作业《公共关系学》实训项目1:公关三要素分析(六选一)参考552
- 肺功能进修总结汇报
- 《燃烧性能测试》课件-第二节 氧指数测试
评论
0/150
提交评论