




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.二次函数的部分图象如图所示,由图象可知方程的根是()A. B.C. D.2.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.100(1+x)=121 B.100(1-x)=121 C.100(1+x)2=121 D.100(1-x)2=1213.已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点()A.D点 B.E点 C.F点 D.D点或F点4.如图,在中,是边上一点,延长交的延长线于点,若,则等于()A. B. C. D.5.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A. B. C. D.46.有5个完全相同的卡片,正面分别写有1,2,3,4,5这5个数字,现把卡片背面朝上,从中随机抽取一个卡片,其数字是奇数的概率为()A. B. C. D.7.若关于的方程,它的一根为3,则另一根为()A.3 B. C. D.8.如图,在中,,则劣弧的度数为()A. B. C. D.9.函数y=ax2+1与(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.10.下列各式正确的是()A. B.C. D.11.已知关于轴对称点为,则点的坐标为()A. B. C. D.12.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切 B.相交 C.相离 D.不能确定二、填空题(每题4分,共24分)13.如图,P1是反比例函数(k>0)在第一象限图象上的一点,点A1的坐标为(2,0).若△P1OA1与△P2A1A2均为等边三角形,则A2点的坐标为_____.14.方程(x+5)2=4的两个根分别为_____.15.已知m,n是方程的两个实数根,则.16.如图,在平面直角坐标系中,Rt△ABO的顶点O与原点重合,顶点B在x轴上,∠ABO=90°,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C.若S四边形ABCD=10,则k的值为.17.如果点把线段分割成和两段(),其中是与的比例中项,那么的值为________.18.点与关于原点对称,则__________.三、解答题(共78分)19.(8分)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表摸球总次数“和为”出现的频数“和为”出现的频率解答下列问题:如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.20.(8分)京剧脸谱是京剧艺术独特的表现形式,现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率(图案为“红脸”的两张卡片分别记为、,图案为“黑脸”的卡片记为).21.(8分)如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.22.(10分)已知关于的方程.(1)求证:不论取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为,求该方程的另一个根.23.(10分)(1)计算:(2)先化简,再求值:,其中m满足一元二次方程.24.(10分)如图,直径为AB的⊙O交的两条直角边BC,CD于点E,F,且,连接BF.(1)求证CD为⊙O的切线;(2)当CF=1且∠D=30°时,求⊙O的半径.25.(12分)计算或解方程:(1)(2)26.某网店销售一种商品,其成本为每件30元.根据市场调查,当每件商品的售价为元()时,每周的销售量(件)满足关系式:.(1)若每周的利润为2000元,且让消费者得到最大的实惠,则售价应定为每件多少元?(2)当时,求每周获得利润的取值范围.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据图象与x轴的交点即可求出方程的根.【详解】根据题意得,对称轴为∵∴∴故答案为:A.【点睛】本题考查了一元二次方程的问题,掌握一元二次方程图象的性质是解题的关键.2、C【详解】试题分析:对于增长率的问题的基本公式为:增长前的数量×=增长后的数量.由题意,可列方程为:100(1+x)2=121,故答案为:C考点:一元二次方程的应用3、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点.【详解】解:∵线段AB=60,AD=13,DE=17,EF=7,∴BD=60-13=47,AE=BE=30,AF=37,∴BD:AB=47:60≈0.783,AF:AB=37:60=0.617,∴点F最接近线段AB的黄金分割点.故选:C.【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中,并且线段AB的黄金分割点有两个.4、B【分析】根据平行四边形的性质可得出AB=CD,,得出,再利用相似三角形的性质得出对应线段成比例,即,从而可得解.【详解】解:四边形是平行四边形,,,,且,,故选:.【点睛】本题考查的知识点有平行四边形的性质,相似三角形的性质,综合运用各知识点能够更好的解决问题.5、A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故选A.考点:1.旋转;2.勾股定理.6、D【分析】让正面的数字是奇数的情况数除以总情况数即为所求的概率.【详解】解:∵从写有数字1,2,3,4,5这5张卡片中抽取一张,其中正面数字是奇数的有1、3、5这3种结果,∴正面的数字是奇数的概率为;故选D.【点睛】此题主要考查了概率公式的应用,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.7、C【分析】设方程的另一根为t,根据根与系数的关系得到3+t=2,然后解关于t的一次方程即可.【详解】设方程的另一根为t,
根据题意得:3+t=2,
解得:t=-1,
即方程的另一根为-1.
故选:C.【点睛】本题主要考查了一元二次方程根与系数的关系:是一元二次方程的两根时,,.8、A【解析】注意圆的半径相等,再运用“等腰三角形两底角相等”即可解.【详解】连接OA,
∵OA=OB,∠B=37°
∴∠A=∠B=37°,∠O=180°-2∠B=106°.故选:A【点睛】本题考核知识点:利用了等边对等角,三角形的内角和定理求解解题关键点:熟记圆心角、弧、弦的关系;三角形内角和定理.9、B【解析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.10、B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A、无法计算,故A错误;B、,故B正确;C、,故C错误;D、,故D错误;故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题.11、D【分析】利用关于x轴对称的点坐标的特点即可解答.【详解】解:∵关于轴对称点为∴的坐标为(-3,-2)故答案为D.【点睛】本题考查了关于x轴对称的点坐标的特点,即识记关于x轴对称的点坐标的特点是横坐标不变,纵坐标变为相反数.12、B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,
∵8>4,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选B.二、填空题(每题4分,共24分)13、(2,0)【分析】由于△P1OA1为等边三角形,作P1C⊥OA1,垂足为C,由等边三角形的性质及勾股定理可求出点P1的坐标,根据点P1是反比例函数y=(k>0)图象上的一点,利用待定系数法求出此反比例函数的解析式;作P2D⊥A1A2,垂足为D.设A1D=a,由于△P2A1A2为等边三角形,由等边三角形的性质及勾股定理,可用含a的代数式分别表示点P2的横、纵坐标,再代入反比例函数的解析式中,求出a的值,进而得出A2点的坐标.【详解】作P1C⊥OA1,垂足为C,∵△P1OA1为边长是2的等边三角形,∴OC=1,P1C=2×=,∴P1(1,).代入y=,得k=,所以反比例函数的解析式为y=.作P2D⊥A1A2,垂足为D.设A1D=a,则OD=2+a,P2D=a,∴P2(2+a,a).∵P2(2+a,a)在反比例函数的图象上,∴代入y=,得(2+a)•a=,化简得a2+2a﹣1=0解得:a=﹣1±.∵a>0,∴a=﹣1+.∴A1A2=﹣2+2,∴OA2=OA1+A1A2=2,所以点A2的坐标为(2,0).故答案为:(2,0).【点睛】此题综合考查了反比例函数的性质,利用待定系数法求函数的解析式,正三角形的性质等多个知识点.此题难度稍大,综合性比较强,注意对各个知识点的灵活应用.14、x1=﹣7,x2=﹣3【分析】直接开平方法解一元二次方程即可.【详解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案为:x1=﹣7,x2=﹣3【点睛】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.15、3【解析】根据题意得m+n=−2,mn=−5,所以m+n−mn=2−(-5)=3.16、﹣1【详解】∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四边形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案为﹣1.17、【分析】根据黄金分割的概念和黄金比是解答即可.【详解】∵点把线段分割成和两段(),其中是与的比例中项,∴点P是线段AB的黄金分割点,∴=,故填.【点睛】此题考察黄金分割,是与的比例中项即点P是线段AB的黄金分割点,即可得到=.18、【分析】直接利用关于原点对称点的性质分析得出答案.【详解】解:∵点P(-4,7)与Q(1m,-7)关于原点对称,∴-4=-1m,解得:m=1,故答案为:1.【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号是解题关键.三、解答题(共78分)19、(1);(2)的值可以为其中一个.【分析】(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=2时,得出数字之和为9的概率,即可得出答案.【详解】(1)利用图表得出:突验次数越大越接近实际概率,所以出现和为8的概率是0.1.(2)当x=2时则两个小球上数家之和为9的概率是故x的值不可以取2.∴出现和为9的概率是三分之一,即有3种可能,∴3+x=9或4+x=9或5+x=9,解得:x=6,x=5,x=4,故x的值可以为4,5,6其中一个.【点睛】本题考查了利用频率估计概率,以及列树状图法求概率,注意甲、乙两人每次同时从袋中各随机摸出1个球,列出图表是解答本题的关键.20、抽出的两张卡片上的图案都是“红脸”的概率是.【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图如图由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片都是“红脸”的结果有4种,所以(两张都是“红脸”)答:抽出的两张卡片上的图案都是“红脸”的概率是.【点睛】此题主要考查了概率的求法.用到的知识点为树状图和概率的求法,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.21、(1)反比例函数的表达式是y=;(2)当mx>时,x的取值范围是﹣1<x<0或x>1;(3)AB=2.【分析】(1)把A的坐标代入反比例函数的解析式即可求出答案;(2)求出直线的解析式,解组成的方程组求出B的坐标,根据A、B的坐标结合图象即可得出答案;(3)根据A、B的坐标.利用勾股定理分别求出OA、OB,即可得出答案.【详解】(1)把A(1,2)代入y=得:k=2,即反比例函数的表达式是y=;(2)把A(1,2)代入y=mx得:m=2,即直线的解析式是y=2x,解方程组得出B点的坐标是(-1,-2),∴当mx>时,x的取值范围是-1<x<0或x>1;(3)过A作AC⊥x轴于C,∵A(1,2),∴AC=2,OC=1,由勾股定理得:AO=,同理求出OB=,∴AB=2.考点:反比例函数与一次函数的交点问题.22、(1)证明见解析;(2)另一根为-2.【分析】(1)写出根的判别式,配方后得到完全平方式,进行解答;
(2)将代入方程得到的值,再根据根与系数的关系求出另一根.【详解】(1)∵,,,∴∴不论取何实数,该方程都有两个不相等的实数根;(2)将代入方程得,,解得:;∴原方程为:,设另一根为,则有,解得:,所以方程的另一个根为.【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,一元二次方程(a≠0)的根与有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.23、(1)4;(2),【分析】(1)根据0次幂得1,负指数幂等于正指数幂的倒数,特殊三角函数值等,求出原式中各项的值,再根据实数的运算法则进行计算.(2)先依据因式分解再约分的方法算出除法部分,再根据异分母分式相加减的法则进行计算.【详解】(1)解:原式===4(2)解:原式==m2-2m-8=0∴(m-4)(m+2)=0∴m1=4,m2=-2当时分母为0,舍去,∴m=4,∴原式=【点睛】本题考查实数运算及分式化简求值,实数运算往往涉及0次幂,负指数,二次根式,绝对值等,掌握相应的法则是实数运算的关键;依据分式运算的顺序及运算法则是分式化简的关键,使分式有意义的取值是此题易错点.24、(1)证明见解析;(2).【分析】(1)连接OF,只要证明OF∥BC,即可推出OF⊥CD,由此即可解决问题;(2)连接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的长度,从而求出⊙O的半径.【详解】(1)连接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵点A、O、B三点共线,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD为⊙O的切线;(2)连接AF,∵AB为直径,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽省黄山地区2023-2024学年七年级下学期期末语文试题
- 2025年节能、高效干燥设备项目合作计划书
- 2.4《边城》教案-【中职专用】高二语文同步教学(高教版2024·拓展模块下册)
- 第16课 国家出路的探索与列强侵略的加剧 教学设计-2024-2025学年高一上学期统编版(2019)必修中外历史纲要上
- 2024年安徽省中安联合招聘73人笔试参考题库附带答案详解
- 2025年广东建设职业技术学院单招职业倾向性测试题库参考答案
- 第 19课资本主义国家的新变化 教学设计-2023-2024学年高一统编版2019必修中外历史纲要下册
- 院感应知应会测试题+答案
- 肝胆外科专科模拟试题(含答案)
- 幼儿中小学面试-2020年下半年教师资格证考试《幼儿结构化面试》真题
- 《电子技术基础(第2版)》 课件全套 第1-12章 绪论、常用半导体器件-数模和模数转换电路
- 儿童康复作业治疗
- 春节后复产复工培训
- 刑事案件及分析报告
- 《红楼梦》重点情节梳理
- 《感染性休克的治疗》课件
- 《消费者权益与法律保护》课程培训教案课件
- 中医基础理论-
- 水利站工作计划
- 五年级下册音乐课程纲要
- 食材配送、包装、运输、验收、售后服务方案应急预案
评论
0/150
提交评论