天津市南开区育红中学2022-2023学年数学九上期末学业水平测试模拟试题含解析_第1页
天津市南开区育红中学2022-2023学年数学九上期末学业水平测试模拟试题含解析_第2页
天津市南开区育红中学2022-2023学年数学九上期末学业水平测试模拟试题含解析_第3页
天津市南开区育红中学2022-2023学年数学九上期末学业水平测试模拟试题含解析_第4页
天津市南开区育红中学2022-2023学年数学九上期末学业水平测试模拟试题含解析_第5页
免费预览已结束,剩余17页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列事件中,是必然事件的是()A.明天一定有雾霾B.国家队射击运动员射击一次,成绩为10环C.13个人中至少有两个人生肖相同D.购买一张彩票,中奖2.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是()A. B. C. D.3.在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向左平移8个单位 D.向右平移8个单位4.如图,以点为位似中心,把放大为原图形的2倍得到,则下列说法错误的是()A.B.C.,,三点在同一直线上D.5.如图,AB是半径为1的⊙O的直径,点C在⊙O上,∠CAB=30°,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为()A.1 B.2 C. D.6.下列标志中是中心对称图形的是()A. B. C. D.7.下列四个几何体中,左视图为圆的是()A. B. C. D.8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是()A.3 B. C. D.49.抛物线的顶点坐标是()A. B. C. D.10.已知反比例函数y=的图象上有三点A(4,y1),B(1.y1),c(,y3)则y1、y1、y3的大小关系为()A.y1>y1>y3 B.y1>y1>y3 C.y3>y1>y1 D.y3>y1>y111.质检部门对某酒店的餐纸进行调查,随机调查5包(每包5片),5包中合格餐纸(单位:片)分别为4,5,4,5,5,则估计该酒店的餐纸的合格率为()A.95% B.97% C.92% D.98%12.下列方程中,是关于的一元二次方程的是()A. B. C. D.二、填空题(每题4分,共24分)13.某班从三名男生(含小强)和五名女生中,选四名学生参加学校举行的“中华古诗文朗诵大赛”,规定女生选n名,若男生小强参加是必然事件,则n=__________.14.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是_____(填写所有正确结论的序号)15.点(2,3)关于原点对称的点的坐标是_____.16.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于.17.如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则的长为_____.18.已知分别切于点,为上不同于的一点,,则的度数是_______.三、解答题(共78分)19.(8分)如图,是直径AB所对的半圆弧,点P是与直径AB所围成图形的外部的一个定点,AB=8cm,点C是上一动点,连接PC交AB于点D.小明根据学习函数的经验,对线段AD,CD,PD,进行了研究,设A,D两点间的距离为xcm,C,D两点间的距离为cm,P,D两点之间的距离为cm.小明根据学习函数的经验,分别对函数,随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整:(2)按照下表中自变量x的值进行取点、画图、测量,分别得到了,与x的几组对应值:x/cm0.002.002.003.003.204.005.006.006.502.008.00/cm0.002.042.093.223.304.004.423.462.502.530.00/cm6.245.294.353.463.302.642.00m2.802.002.65补充表格;(说明:补全表格时,相关数值保留两位小数)(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点,并画出函数的图象:(3)结合函数图象解决问题:当AD=2PD时,AD的长度约为___________.20.(8分)如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?21.(8分)如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.①当时,求线段的长;②若,结合函数的图象,直接写出的取值范围.22.(10分)如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标。(2)点在该二次函数图象上.①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.23.(10分)用一段长为28m的铁丝网与一面长为8m的墙面围成一个矩形菜园,为了使菜园面积尽可能的大,给出了甲、乙两种围法,请通过计算来说明这个菜园长、宽各为多少时,面积最大?最大面积是多少?24.(10分)用配方法解方程:25.(12分)如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.(1)求一次函数和反比例函数的表达式;(2)设是直线上一点,过作轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.26.如图,点B、D、E在一条直线上,BE交AC于点F,,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BFC.

参考答案一、选择题(每题4分,共48分)1、C【分析】必然事件是一定发生的事情,据此判断即可.【详解】A.明天有雾霾是随机事件,不符合题意;B.国家队射击运动员射击一次,成绩为10环是随机事件,不符合题意;C.总共12个生肖,13个人中至少有两个人生肖相同是必然事件,符合题意;D.购买一张彩票,中奖是随机事件,不符合题意;故选:C.【点睛】本题考查了必然事件与随机事件,必然事件是一定发生的的时间,随机事件是可能发生,也可能不发生的事件,熟记概念是解题的关键.2、B【分析】直接利用概率公式计算求解即可.【详解】转动转盘停止后,指针指向“中”字所在扇形的概率是,故选:B.【点睛】本题考查概率的计算,解题的关键是熟练掌握概率的计算公式.3、B【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【详解】y=(x+5)(x-3)=(x+1)2-16,顶点坐标是(-1,-16).y=(x+3)(x-5)=(x-1)2-16,顶点坐标是(1,-16).所以将抛物线y=(x+5)(x-3)向右平移2个单位长度得到抛物线y=(x+3)(x-5),故选B.【点睛】此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.4、B【分析】直接利用位似图形的性质进而得出答案.【详解】∵以点O为位似中心,把△ABC放大为原图形的2倍得到△ABC,

∴△ABC∽△A′B′C′,A,O,A′三点在同一直线上,AC∥A′C′,

无法得到CO:CA′=1:2,

故选:B.【点睛】此题考查了位似变换,正确掌握位似图形的性质是解题关键.5、C【分析】作D点关于AB的对称点E,连接OC.OE、CE,CE交AB于P',如图,利用对称的性质得到P'E=P'D,,再根据两点之间线段最短判断点P点在P'时,PC+PD的值最小,接着根据圆周角定理得到∠BOC=60°,∠BOE=30°,然后通过证明△COE为等腰直角三角形得到CE的长即可.【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P',如图,∵点D与点E关于AB对称,∴P'E=P'D,,∴P'C+P'D=P'C+P'E=CE,∴点P点在P'时,PC+PD的值最小,最小值为CE的长度.∵∠BOC=2∠CAB=2×30°=60°,而D为的中点,∴∠BOE∠BOC=30°,∴∠COE=60°+30°=90°,∴△COE为等腰直角三角形,∴CEOC,∴PC+PD的最小值为.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6、B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;

B、是中心对称图形,符合题意;

C、既不是轴对称图形,也不是中心对称的图形,不合题意;

D、是轴对称图形,不是中心对称的图形,不合题意.

故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.7、A【分析】根据三视图的法则可得出答案.【详解】解:左视图为从左往右看得到的视图,A.球的左视图是圆,B.圆柱的左视图是长方形,C.圆锥的左视图是等腰三角形,D.圆台的左视图是等腰梯形,故符合题意的选项是A.【点睛】错因分析较容易题.失分原因是不会判断常见几何体的三视图.8、C【分析】根据勾股定理求得,然后根据矩形的性质得出.【详解】解:∵四边形COED是矩形,∴CE=OD,∵点D的坐标是(1,3),∴,∴,故选:C.【点睛】本题考查的是矩形的性质,两点间的距离公式,掌握矩形的对角线的性质是解题的关键.9、A【分析】根据二次函数的性质,利用顶点式即可得出顶点坐标.【详解】解:∵抛物线,

∴抛物线的顶点坐标是:(1,3),

故选:A.【点睛】本题主要考查了利用二次函数顶点式求顶点坐标.能根据二次函数的顶点式找出抛物线的对称轴及顶点坐标是解题的关键.10、C【分析】把A、B、C的坐标分别代入y=,分别求出y1、y1、y2的值,从而得到它们的大小关系.【详解】解:把A(4,y1),B(1.y1),c(,y2)分别代入y=,得y1=,y1==,y2==所以y1<y1<y2.故选:C.【点睛】本题考查的知识点是根据反比例函数解析式自变量的值求函数值,比较基础.11、C【分析】随机调查1包餐纸的合格率作为该酒店的餐纸的合格率,即用样本估计总体.【详解】解:1包(每包1片)共21片,1包中合格餐纸的合格率.故选:C.【点睛】本题考查用样本估计整体,注意1包中的总数是21,不是1.12、C【解析】只有一个未知数且未知数的最高次数为2的整式方程为一元二次方程.【详解】解:A选项,缺少a≠0条件,不是一元二次方程;B选项,分母上有未知数,是分式方程,不是一元二次方程;C选项,经整理后得x2+x=0,是关于x的一元二次方程;D选项,经整理后是一元一次方程,不是一元二次方程;故选择C.【点睛】本题考查了一元二次方程的定义.二、填空题(每题4分,共24分)13、1;【解析】根据必然事件的定义可知三名男生都必须被选中,可得答案.【详解】解:∵男生小强参加是必然事件,∴三名男生都必须被选中,∴只选1名女生,故答案为1.【点睛】本题考查的是事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.14、①②③【分析】根据折叠的性质得出AP垂直平分DD',判断出①正确.过点P作PG⊥AB于点G,易知四边形DPGA,四边形PCBG是矩形,所以AD=PG,DP=AG,GB=PC,易证△APG∽△PBG,所以PG2=AG•GB,即AD2=DP•PC判断出③正确;DP∥AB,所以∠DPA=∠PAM,由题意可知:∠DPA=∠APM,所以∠PAM=∠APM,由于∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB,从而可知PM=MB=AM,又易证四边形PMBN是平行四边形,所以四边形PMBN是菱形;判断出②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,从而求出GB=PC=4,AB=AG+GB=5,由于CP∥AB,从而可证△PCF∽△BAF,△PCE∽△MAE,从而可得,,从而可求出EF=AF﹣AE=AC﹣=AC,从而可得,判断出④错误.【详解】解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴,∴又易证:△PCE∽△MAE,AM=AB=∴,∴,∴EF=AF﹣AE=AC﹣=AC∴,故④错误,即:正确的有①②③,故答案为:①②③.【点睛】本题是一道关于矩形折叠的综合题目,考查的知识点有折叠的性质,矩形的性质,相似三角形的性质,菱形的判定等,此题充分考查了学生对所学知识点的掌握情况以及综合利用能力,是一道很好的题目.15、(-2,-3).【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).16、45°【分析】连接AO、BO,先根据正方形的性质求得∠AOB的度数,再根据圆周角定理求解即可.【详解】连接AO、BO∵⊙O是正方形ABCD的外接圆∴∠AOB=90°∴∠APB=45°.【点睛】圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.17、【解析】试题解析:连接CF,DF,则△CFD是等边三角形,∴∠FCD=60°,∵在正五边形ABCDE中,∠BCD=108°,∴∠BCF=48°,∴的长=,故答案为.18、或【分析】连接OA、OB,先确定∠AOB,再分就点C在上和上分别求解即可.【详解】解:如图,连接OA、OB,∵PA、PB分别切于A、B两点,∴∠PAO=∠PBO=90°∴∠AOB=360°-90°-90°-80°=100°,当点C1在上时,则∠AC1B=∠AOB=50°当点C2在B上时,则∠AC2B+∠AC1B=180°,即.∠AC2B=130°.故答案为或.【点睛】本题主要考查了圆的切线性质和圆周角定理,根据已知条件确定∠AOB和分类讨论思想是解答本题的关键.三、解答题(共78分)19、(2)m=2.23;(2)见解析;(3)4.3【分析】(2)根据表格中的数据可得:当x=5或2时,y2=2.00,然后画出图形如图,可得当与时,,过点P作PM⊥AB于M,然后根据等腰三角形的性质和勾股定理求出PM的长即得m的值;(2)用光滑的曲线依次连接各点即可;(3)由题意AD=2PD可得x=2y2,只要在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,然后结合图象解答即可.【详解】解:(2)由表格可知:当x=5或2时,y2=2.00,如图,即当时,,时,,∴,过点P作PM⊥AB于M,则,则在Rt△中,,即当x=6时,m=2.23;(2)如图:(3)由题意得:AD=2PD,即x=2y2,即在函数y2的图象上寻找横坐标是纵坐标的2倍的点即可,如图,点Q的位置即为所求,此时,x≈4.3,即AD≈4.3.故答案为:4.3.【点睛】本题主要考查了函数图象的规律、等腰三角形的性质、勾股定理和圆的有关知识,正确理解题意、把握题中的规律、熟练运用数形结合的思想方法是解题关键.20、(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为1.

【解析】分析:(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.详解:根据题意,把,代入抛物线解析式可得,解得,抛物线的表达式为,,抛物线的顶点坐标为;如图1,过P作轴于点C,,,当时,,,即,设,则,,把P点坐标代入抛物线表达式可得,解得或,经检验,与点A重合,不合题意,舍去,所求的P点坐标为;当两个动点移动t秒时,则,,如图2,作轴于点E,交AB于点F,则,,,点A到PE的距离竽OE,点B到PE的距离等于BE,,且,,当时,S有最大值,最大值为1.

点睛:本题为二次函数的综合应用,涉及待定系数法、直角三角形的性质、二次函数的性质、三角形的面积及方程思想等知识.在(1)中注意待定系数法的应用,在(2)中构造Rt△PAC是解题的关键,在(3)中用t表示出P、M的坐标,表示出PF的长是解题的关键.本题考查知识点较多,综合性较强,难度适中.21、(1);(2)①;②或【分析】(1)先把点A代入一次函数得到a的值,再把点A代入反比例函数,即可求出k;(2)①根据题意,先求出m的值,然后求出点C、D的坐标,即可求出CD的长度;②根据题意,当PC=PD时,点C、D恰好与点A、B重合,然后求出点B的坐标,结合函数图像,即可得到m的取值范围.【详解】解:(1)把代入,得,∴点A为(1,3),把代入,得;(2)当时,点P为(2,0),如图:把代入直线,得:,∴点C坐标为(2,4),把代入,得:,∴;②根据题意,当PC=PD时,点C、D恰好与点A、B重合,如图,∵,解得:或(即点A),∴点B的坐标为(),由图像可知,当时,有点P在的左边,或点P在的右边取到,∴或.【点睛】本题考查了反比例函数的图像和性质,一次函数的图像和性质,解题的关键是掌握反比例函数与一次函数的联系,熟练利用数形结合的思想进行解题.22、(1);(2)①11;②.【解析】(1)把点P(-2,3)代入y=x2+ax+3中,即可求出a;(2)①把m=2代入解析式即可求n的值;②由点Q到y轴的距离小于2,可得-2<m<2,在此范围内求n即可.【详解】(1)解:把代入,得,解得.∵,∴顶点坐标为.(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴-2<m<2,∴2≤n<11.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征是解题的关键.23、当矩形的长、宽分别为9m、9m时,面积最大,最大面积为81m1.【分析】根据矩形的面积公式甲图列出算式可以直接求面积,乙图设垂直于墙的一边为x,则另一边为(18﹣x)(包括墙长)列出二次函数解析式即可求解.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论