2022-2023学年江苏省徐州市撷秀中学数学九上期末学业质量监测试题含解析_第1页
2022-2023学年江苏省徐州市撷秀中学数学九上期末学业质量监测试题含解析_第2页
2022-2023学年江苏省徐州市撷秀中学数学九上期末学业质量监测试题含解析_第3页
2022-2023学年江苏省徐州市撷秀中学数学九上期末学业质量监测试题含解析_第4页
2022-2023学年江苏省徐州市撷秀中学数学九上期末学业质量监测试题含解析_第5页
免费预览已结束,剩余20页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.某同学用一根长为(12+4π)cm的铁丝,首尾相接围成如图的扇形(不考虑接缝),已知扇形半径OA=6cm,则扇形的面积是()A.12πcm2 B.18πcm2 C.24πcm2 D.36πcm22.直角三角形的两边长分别为16和12,则此三角形的外接圆半径是()A.8或6 B.10或8 C.10 D.83.如图,将Rt△ABC平移到△A′B′C′的位置,其中∠C=90°,使得点C′与△ABC的内心重合,已知AC=4,BC=3,则阴影部分的周长为()A.5 B.6 C.7 D.84.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为,则下面所列方程正确的是()A. B.C. D.5.对于实数,定义运算“*”;关于的方程恰好有三个不相等的实数根,则的取值范围是()A. B.C. D.6.已知二次函数的图象如图所示,下列3个结论:①;②b<a+c;③,其中正确的是()A.①② B.①③ C.②③ D.①②③7.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼8.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A. B. C. D.9.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了次手,这次参加会议到会的人数是人,可列方程为:()A. B. C. D.10.如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠B B.∠ADE=∠C C. D.二、填空题(每小题3分,共24分)11.已知⊙半径为,点在⊙上,,则线段的最大值为_____.12.如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为.13.如上图,四边形中,,点在轴上,双曲线过点,交于点,连接.若,,则的值为______.14.分解因式:=_________.15.如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO、BD,则∠OBD的度数是_____.16.近日,某市推出名师公益大课堂.据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.如果第二批,第三批公益课受益学生人次的增长率相同,则这个增长率是______.17.若关于的方程的一个根是1,则的值为______.18.如图,用长的铝合金条制成使窗户的透光面积最大的矩形窗框,那么这个窗户的最大透光面积是___________.(中间横框所占的面积忽略不计)三、解答题(共66分)19.(10分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.20.(6分)已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF.(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.21.(6分)如图,对称轴是的抛物线与轴交于两点,与轴交于点,求抛物线的函数表达式;若点是直线下方的抛物线上的动点,求的面积的最大值;若点在抛物线对称轴左侧的抛物线上运动,过点作铀于点,交直线于点,且,求点的坐标;在对称轴上是否存在一点,使的周长最小,若存在,请求出点的坐标和周长的最小值;若不存在,请说明理由.22.(8分)某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a=,b=,c=.(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.23.(8分)解方程:3x2﹣4x+1=1.(用配方法解)24.(8分)数学活动课上,老师提出问题:如图1,有一张长,宽的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成-一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.下面是探究过程,请补充完整:(1)设小正方形的边长为,体积为,根据长方体的体积公式得到和的关系式;(2)确定自变量的取值范围是(3)列出与的几组对应值.······(4)在平面直角坐标系中,描出以补全后的表中各对对应值为坐标的点画出该函数的图象如图2,结合画出的函数图象,当小正方形的边长约为时,盒子的体积最大,最大值约为.(估读值时精确到)25.(10分)一段路的“拥堵延时指数”计算公式为:拥堵延时指数=,指数越大,道路越堵。高德大数据显示第二季度重庆拥堵延时指数首次排全国榜首。为此,交管部门在A、B两拥堵路段进行调研:A路段平峰时汽车通行平均时速为45千米/时,B路段平峰时汽车通行平均时速为50千米/时,平峰时A路段通行时间是B路段通行时间的倍,且A路段比B路段长1千米.(1)分别求平峰时A、B两路段的通行时间;(2)第二季度大数据显示:在高峰时,A路段的拥堵延时指数为2,每分钟有150辆汽车进入该路段;B路段的拥堵延时指数为1.8,每分钟有125辆汽车进入该路段。第三季度,交管部门采用了智能红绿灯和潮汐车道的方式整治,拥堵状况有明显改善,在高峰时,A路段拥堵延时指数下降了a%,每分钟进入该路段的车辆增加了;B路段拥堵延时指数下降,每分钟进入该路段的车辆增加了a辆。这样,整治后每分钟分别进入两路段的车辆通过这两路段所用时间总和,比整治前每分钟分别进入这两段路的车辆通过这两路段所用时间总和多小时,求a的值.26.(10分)如图,抛物线y=﹣x2+bx+c与x轴相交于A、B两点,与y轴相交于点C,且点B与点C的坐标分别为B(3,0),C(0,3),点M是抛物线的顶点.(1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD=m,△PCD的面积为S,①求S与m的函数关系式,写出自变量m的取值范围.②当S取得最值时,求点P的坐标;(3)在MB上是否存在点P,使△PCD为直角三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】首先根据铁丝长和扇形的半径求得扇形的弧长,然后根据弧长公式求得扇形的圆心角,然后代入扇形面积公式求解即可.【详解】解:∵铁丝长为(12+4π)cm,半径OA=6cm,∴弧长为4πcm,∴扇形的圆心角为:=120°,∴扇形的面积为:=12πcm2,故选:A.【点睛】本题考查了扇形的面积的计算,解题的关键是了解扇形的面积公式及弧长公式,难度不大.2、B【分析】分两种情况:①16为斜边长;②16和12为两条直角边长,由勾股定理易求得此直角三角形的斜边长,进而可求得外接圆的半径.【详解】解:由勾股定理可知:①当直角三角形的斜边长为16时,这个三角形的外接圆半径为8;②当两条直角边长分别为16和12,则直角三角形的斜边长=因此这个三角形的外接圆半径为1.综上所述:这个三角形的外接圆半径等于8或1.故选:B.【点睛】本题考查的是三角形的外接圆与外心,掌握直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆是解题的关键.3、A【分析】由三角形面积公式可求C'E的长,由相似三角形的性质可求解.【详解】解:如图,过点C'作C'E⊥AB,C'G⊥AC,C'H⊥BC,并延长C'E交A'B'于点F,连接AC',BC',CC',∵点C'与△ABC的内心重合,C'E⊥AB,C'G⊥AC,C'H⊥BC,

∴C'E=C'G=C'H,

∵S△ABC=S△AC'C+S△AC'B+S△BC'C,∴AC×BC=AC×CC'+BA×C'E+BC×C'H∴C'E=1,

∵将Rt△ABC平移到△A'B'C'的位置,

∴AB∥A'B',AB=A'B',A'C'=AC=4,B'C'=BC=3

∴C'F⊥A'B',A'B'=5,∴A'C'×B'C'=A'B'×C'F,∴C'F=,∵AB∥A'B'

∴△C'MN∽△C'A'B',∴C阴影部分=C△C'A'B'×=(5+3+4)×=5.故选A.【点睛】本题考查了三角形的内切圆和内心,相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.4、D【分析】由题意设每年的增长率为x,那么第一年的产值为3500(1+x)万元,第二年的产值3500(1+x)(1+x)万元,然后根据今年上升到5300万元即可列出方程.【详解】解:设每年的增长率为x,依题意得3500(1+x)(1+x)=5300,即.故选:D.【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x”的含义以及找到题目中的等量关系.5、C【分析】设,根据定义得到函数解析式,由方程的有三个不同的解去掉函数图象与直线y=t的交点有三个,即可确定t的取值范围.【详解】设,由定义得到,∵方程恰好有三个不相等的实数根,∴函数的图象与直线y=t有三个不同的交点,∵的最大值是∴若方程恰好有三个不相等的实数根,则t的取值范围是,故选:C.【点睛】此题考查新定义的公式,抛物线与直线的交点与方程的解的关系,正确理解抛物线与直线的交点与方程的解的关系是解题的关键.6、A【分析】由抛物线的开口方向判断a的符号,根据抛物线的对称轴判断b的符号,由抛物线与y轴的交点判断c的符号;根据x=-1时y值的符号判断b与a+c的大小;根据x=2时y值的符号判断4a+2b+c的符号.【详解】解:①由图象可知:a>0,c>0,∵->0,∴b<0,∴abc<0,故①正确;

②当x=-1时,y=a-b+c>0,故b<a+c,故②正确;

③当x=2时,y=4a+2b+c<0,故③错误,故选:A.【点睛】本题主要考查了抛物线图象与二次函数系数之间的关系以及函数值的符号问题,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.7、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.8、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、B【分析】设这次会议到会人数为x,根据每两个参加会议的人都相互握了一次手且整场会议一共握了45次手,即可得出关于x的一元二次方程,此题得解.【详解】解:设这次会议到会人数为x,

依题意,得:.

故选:B.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10、D【分析】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.根据此,分别进行判断即可.【详解】解:由题意得∠DAE=∠CAB,A、当∠AED=∠B时,△ABC∽△AED,故本选项不符合题意;B、当∠ADE=∠C时,△ABC∽△AED,故本选项不符合题意;C、当=时,△ABC∽△AED,故本选项不符合题意;D、当=时,不能推断△ABC∽△AED,故本选项符合题意;故选D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.二、填空题(每小题3分,共24分)11、【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵,∴,∴,∵,∴,∴,∴,又∵,∴,∵,∴,又∵,∴,∴,∴,在△OEB中,根据三角形三边关系可得:,∵,∴,∴BE的最大值为:,∴OC的最大值为:.【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形.12、2α【解析】分析:由在Rt△ABC中,∠ACB=90°,∠A=α,可求得:∠B=90°﹣α,由旋转的性质可得:CB=CD,根据等边对等角的性质可得∠CDB=∠B=90°﹣α,然后由三角形内角和定理,求得答案:∵在Rt△ABC中,∠ACB=90°,∠A=α,∴∠B=90°﹣α.由旋转的性质可得:CB=CD,∴∠CDB=∠B=90°﹣α.∴∠BCD=180°﹣∠B﹣∠CDB=2α,即旋转角的大小为2α.13、6【分析】如图,过点F作交OA于点G,由可得OA、BF与OG的关系,设,则,结合可得点B的坐标,将点E、点F代入中即可求出k值.【详解】解:如图,过点F作交OA于点G,则设,则,即双曲线过点,点化简得,即解得,即.故答案为:6.【点睛】本题主要考查了反比例函数的图像,灵活利用坐标表示线段长和三角形面积是解题的关键.14、【解析】提取公因式法和公式法因式分解.【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,.15、30°【解析】根据点的坐标得到OD,OC的长度,利用勾股定理求出CD的长度,由此求出∠OCD的度数;由于∠OBD和∠OCD是弧OD所对的圆周角,根据“同弧所对的圆周角相等”求出∠OBD的度数.【详解】连接CD.由题意得∠COD=90°,∴CD是⊙A的直径.∵D(0,1),C(,0),∴OD=1,OC=,∴CD==2,∴∠OCD=30°,∴∠OBD=∠OCD=30°.(同弧或等弧所对的圆周角相等)

故答案为30°.【点睛】本题考查圆周角定理以及推论,可以结合圆周角进行解答.16、【分析】设增长率为x,根据“第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次”可列方程求解.【详解】设增长率为x,根据题意,得2(1+x)2=2.42,解得x1=-2.1(舍去),x2=0.1=10%.∴增长率为10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用-增长率问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.17、-6【分析】把x=1代入原方程就可以得到一个关于k的方程,解这个方程即可求出k的值.【详解】把代入方程得到,解得.故答案为:−6.【点睛】本题考查了一元二次方程的解,将方程的根代入并求值是解题的关键.18、【分析】设窗的高度为xm,宽为m,根据矩形面积公式列出二次函数求函数值的最大值即可.【详解】解:设窗的高度为xm,宽为.所以,即,当x=2m时,S最大值为.故答案为:.【点睛】本题考查二次函数的应用.能熟练将二次函数化为顶点式,并据此求出函数的最值是解决此题的关键.三、解答题(共66分)19、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°,∠CED=35°【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=,∠CBE=,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE=80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.20、(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.【解析】试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.21、(1)y=x2+x﹣2;(2)△PBC面积的最大值为2;(3)P(﹣3,﹣)或P(﹣5,);(4)存在,点M(﹣1,﹣),△AMC周长的最小值为.【分析】(1)先由抛物线的对称性确定点B坐标,再利用待定系数法求解即可;(2)先利用待定系数法求得直线BC的解析式,然后设出点P的横坐标为t,则可用含t的代数式表示出PE的长,根据面积的和差可得关于t的二次函数,再根据二次函数的性质可得答案;(3)先设D(m,0),然后用m的代数式表示出E点和P点坐标,由条件可得关于m的方程,解出m的值即可得解;(4)要使周长最小,由于AC是定值,所以只要使MA+MC的值最小即可,由于点B是点A关于抛物线对称轴的对称点,则点M就是BC与抛物线对称轴的交点,由于点M的横坐标已知,则其纵坐标易得,再根据勾股定理求出AC+BC,即为周长的最小值.【详解】解:(1)∵对称轴为x=﹣1的抛物线与x轴交于A(2,0),B两点,∴B(﹣4,0).设抛物线解析式是:y=a(x+4)(x﹣2),把C(0,﹣2)代入,得:a(0+4)(0﹣2)=﹣2,解得a=,所以该抛物线解析式是:y=(x+4)(x﹣2)=x2+x﹣2;(2)设直线BC的解析式为:y=mx+n,把B(﹣4,0),C(0,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x﹣2,作PQ∥y轴交BC于Q,如图1,设P(t,t2+t﹣2),则Q(t,﹣t﹣2),∴PQ=﹣t﹣2﹣(t2+t﹣2)=﹣t2﹣t,∴S△PBC=S△PBQ+S△PCQ=•PQ•4=﹣t2﹣2t=﹣(t+2)2+2,∴当t=﹣2时,△PBC面积有最大值,最大值为2;(3)设D(m,0),∵DP∥y轴,∴E(m,﹣m﹣2),P(m,m2+m﹣2),∵PE=OD,∴,∴m2+3m=0或m2+5m=0,解得:m=﹣3,m=0(舍去)或m=﹣5,m=0(舍去),∴P(﹣3,﹣)或P(﹣5,);(4)∵点A、B关于抛物线的对称轴对称,∴当点M为直线BC与对称轴的交点时,MA+MC的值最小,如图2,此时△AMC的周长最小.∵直线BC的解析式为y=﹣x﹣2,抛物线的对称轴为直线x=﹣1,∴当x=﹣1时,y=﹣.∴抛物线对称轴上存在点M(﹣1,﹣)符合题意,此时△AMC周长的最小值为AC+BC=.【点睛】此题是二次函数综合题,主要考查了利用待定系数法确定函数解析式、二次函数的性质、一元二次方程的解法、二次函数图象上的坐标特征和两线段之和最小等知识,属于常考题型,解题的关键是熟练掌握二次函数的性质和函数图象上点的坐标特征.22、解:(1)a=135,b=134.5,c=1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据;(2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为=134.5;根据方差公式:s2==1.6,∴a=135,b=134.5,c=1.6;(2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S2一<S2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.23、x1=1,x2=【分析】首先把系数化为1,移项,把常数项移到等号的右侧,然后在方程的左右两边同时加上一次项系数的一半,即可使左边是完全平方公式,右边是常数项,即可求解.【详解】3x2﹣4x+1=13(x2﹣x)+1=1(x﹣)2=∴x﹣=±∴x1=1,x2=【点睛】本题考查解一元二次方程的方法,解题的关键是熟练掌握用配方法解一元二次方程的一般步骤.24、(1);(2);(3)3,2;(4)0.55【分析】(1)根据长方形和正方形边长分别求出长方体的长、宽、高,然后即可得出和的关系式;(2)边长都大于零,列出不等式组,求解即可;(3)将的值代入关系式,即可得解;(4)根据函数图象,由最大值即可估算出的值.【详解】(1)由题意,得长方体的长为,宽为,高为∴y和x的关系式:(2)由(1)得∴变量x的取值范围是;(3)将和代入(1)中关系式,得分别为3,2;(4)由图象可知,与3.03对应的值约为0.55.【点睛】此题主要考查展开图折叠成长方体,以及与函数的综合运用,熟练掌握,即可解题.25、(1)平峰时A路段的通行时间是小时,平峰时B路段的通行时间是小时;(2)的值是1.【分析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论