2023届云南省文山州文山市马塘中学八年级数学第一学期期末复习检测模拟试题含解析_第1页
2023届云南省文山州文山市马塘中学八年级数学第一学期期末复习检测模拟试题含解析_第2页
2023届云南省文山州文山市马塘中学八年级数学第一学期期末复习检测模拟试题含解析_第3页
2023届云南省文山州文山市马塘中学八年级数学第一学期期末复习检测模拟试题含解析_第4页
2023届云南省文山州文山市马塘中学八年级数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图象不能反映y是x的函数的是()A. B.C. D.2.在−2,0,3,6这四个数中,最大的数是()A.−2B.0C.3D.63.若二元一次方程所对应的直线是l,则下列各点不在直线l上的是()A. B. C. D.4.如图,已知和都是等腰直角三角形,,则的度数是().A.144° B.142° C.140° D.138°5.下列二次根式中,是最简二次根式的是()A. B. C. D.6.若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤77.若分式的值为0,则x的值为()A.-3 B.- C. D.38.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若,则△A6B6A7的边长为()A.6 B.12 C.16 D.329.下列计算正确的是().A. B. C. D.10.若x没有平方根,则x的取值范围为()A.x为负数 B.x为0 C.x为正数 D.不能确定二、填空题(每小题3分,共24分)11.如图,AB⊥BC,AD⊥DC,∠BAD=100°,在BC、CD上分别找一点M、N,当△AMN的周长最小时,∠AMN+∠ANM的度数是_____.12.若直线与直线的图象交x轴于同一点,则之间的关系式为_________.13.在平面直角坐标系中,,直线与轴交于点,与轴交于点为直线上的一个动点,过作轴,交直线于点,若,则点的横坐标为__________.14.在平面直角坐标系中,已知一次函数的图像经过,两点,若,则.(填”>”,”<”或”=”)15.清代诗人袁枚的一首诗《苔》中写到:“白日不到处,青春恰自来.苔花如米小,也学牡丹开”,若苔花的花粉直径约为0.0000084米,用科学记数法表示为______米.16.正十边形的内角和等于_______,每个外角等于__________.17.已知点A(l,-2),若A、B两点关于x轴对称,则B点的坐标为_______18.用反证法证明命题“在一个三角形中至少有一个内角小于或等于60°”时,应假设________.三、解答题(共66分)19.(10分)如图1,是直角三角形,,的角平分线与的垂直平分线相交于点.(1)如图2,若点正好落在边上.①求的度数;②证明:.(2)如图3,若点满足、、共线.线段、、之间是否满足,若满足请给出证明;若不满足,请说明理由.20.(6分)甲、乙两人分别从A,B两地同时出发,匀速相向而行.甲的速度大于乙的速度,甲到达B地后,乙继续前行.设出发xh后,两人相距ykm,图中折线表示从两人出发至乙到达A地的过程中y与x之间的函数关系.(1)根据图中信息,求出点Q的坐标,并说明它的实际意义;(2)求甲、乙两人的速度.21.(6分)如图(1)所示,在A,B两地间有一车站C,甲汽车从A地出发经C站匀速驶往B地,乙汽车从B地出发经C站匀速驶往A地,两车速度相同.如图(2)是两辆汽车行驶时离C站的路程y(千米)与行驶时间x(小时)之间的函数关系的图象.(1)填空:a=km,b=h,AB两地的距离为km;(2)求线段PM、MN所表示的y与x之间的函数表达式(自变量取值范围不用写);(3)求行驶时间x满足什么条件时,甲、乙两车距离车站C的路程之和最小?22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为(,5),(,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC关于y轴对称的△A′B′C′;⑶写出点B′的坐标.23.(8分)甲、乙两车分别从两地同时出发,沿同一公路相向而行,开往两地.已知甲车每小时比乙车每小时多走,且甲车行驶所用的时间与乙车行驶所用的时间相同.(1)求甲、乙两车的速度各是多少?(2)实际上,甲车出发后,在途中因车辆故障耽搁了20分钟,但仍比乙车提前1小时到达目的地.求两地间的路程是多少?24.(8分)明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,路板一尺离地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑话欢嬉,良工高师素好奇,算出索长有几?”翻译成现代文的大意是:如图.秋千静挂时,踏板离地的高度是尺,现在兑出两步(两步算作尺,故尺)的水平距离到的位置,有人记录踏板离地的高度为尺.仕女佳人争着荡秋千,一整天都欢声笑语,工匠师傅们好奇的是秋千绳索有多长呢﹖请你来解答工匠师傅们的困惑,求出秋千绳索的长度.25.(10分)如图所示,∠A=∠D=90°,AB=DC,AC,BD相交于点M,求证:(1)∠ABC=∠DCB;(2)AM=DM.26.(10分)“双十一”活动期间,某淘宝店欲将一批水果从市运往市,有火车和汽车两种运输方式,火车和汽车途中的平均速度分别为100千米/时和80米/时.其它主要参考数据如下:运输工具途中平均损耗费用(元/时)途中综合费用(元/千米)装卸费用(元)火车200152000汽车20020900(1)①若市与市之间的距离为800千米,则火车运输的总费用是______元;汽车运输的总费用是______元;②若市与市之间的距离为千米,请直接写出火车运输的总费用(元)、汽车运输的总费用(元)分别与(千米)之间的函数表达式.(总费用=途中损耗总费用+途中综合总费用+装卸费用)(2)如果选择火车运输方式合算,那么的取值范围是多少?

参考答案一、选择题(每小题3分,共30分)1、C【详解】解:A.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意;B.当x取一值时,y有唯一与它对应的值,y是x的函数,;不符合题意C.当x取一值时,y没有唯一与它对应的值,y不是x的函数,符合题意;D.当x取一值时,y有唯一与它对应的值,y是x的函数,不符合题意.故选C.2、C【解析】试题分析:根据实数的大小比较法则,正数大于0,0大于负数,两个负数相比,绝对值大的反而小.因此,∵−2<0<6∴四个数中,最大的数是3.故选C.考点:实数的大小比较.3、B【解析】将各点横坐标看作x的值,纵坐标看作y的值,然后代入方程中,如果这组数值是方程的解,则该点在对应的直线上,否则亦然。【详解】解:因为都是方程的解,故点,,,在直线l上,不是二元一次方程的解,所以点不在直线l上.故选B.【点睛】本题考查了一次函数与二元一次方程组的关系,根据直线上点的坐标特征进行验证即可,比较简单.4、C【分析】根据和都是等腰直角三角形,得,,,从而通过推导证明,得;再结合三角形内角和的性质,通过计算即可得到答案.【详解】∵和都是等腰直角三角形∴,,∴∴∴∴∴∴故选:C.【点睛】本题考查了等腰直角三角形、全等三角形、三角形内角和的知识;解题的关键是熟练掌握等腰直角三角形、全等三角形、三角形内角和的性质,从而完成求解.5、B【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】解:A.=,故不是最简二次根式;B.,是最简二次根式;C.=,故不是最简二次根式;D.,故不是最简二次根式故选B.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.6、D【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.【详解】解:由(1)得,x<m,由(2)得,x≥3,故原不等式组的解集为:3≤x<m,∵不等式组的正整数解有4个,∴其整数解应为:3、4、5、6,∴m的取值范围是6<m≤1.故选:D.【点睛】本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.7、D【分析】根据分式值为的条件进行列式,再解方程和不等式即可得解.【详解】解:∵分式的值为∴∴.故选:D【点睛】本题考查了分式值为的条件:分子等于零而分母不等于零,熟练掌握分式值为零的条件是解题的关键.8、C【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2,A4B4=8B1A2,A5B5=1B1A2…进而得出答案.【详解】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=,∴A2B1=,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=2,A4B4=8B1A2=4,A5B5=1B1A2=8,…∴△AnBnAn+1的边长为×2n﹣1,∴△A6B6A7的边长为×26﹣1=×25=1.故选:C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=1B1A2进而发现规律是解题关键.9、A【解析】请在此填写本题解析!A.∵,故正确;B.∵,故不正确;C.∵a3与a2不是同类项,不能合并,故不正确;D.∵,故不正确;故选A.10、A【分析】根据平方根的定义即可求出答案,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.【详解】解:∵负数没有平方根,∴若x没有平方根,则x的取值范围为负数.故选:A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根.二、填空题(每小题3分,共24分)11、160°.【解析】分析:根据要使△AMN的周长最小,即利用点的对称,使三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=∠AA″A′=80°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″),即可得出答案.详解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=100°,∴∠AA′M+∠A″=80°.由轴对称图形的性质可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160°.故答案为:160°.点睛:本题考查的是轴对称-最短路线问题,涉及到平面内最短路线问题求法以及三角形的外角的性质和垂直平分线的性质等知识,根据已知得出M,N的位置是解题关键.12、2p+3q=1.【解析】根据图象与x轴交点求法得出直线y=3x+p与直线y=-2x+q的图象与x轴交点,进而利用两式相等得出答案即可.【详解】解:∵直线y=3x+p与直线y=-2x+q的图象交x轴于同一点,

∴当y=1得出1=3x+p,当y=1得出1=-2x+q,整理得出:2p+3q=1,

故答案为:2p+3q=1.13、2或【分析】先直线AB的解析式,然后设出点P和点Q的坐标,根据列方程求解即可.【详解】设直线AB的解析式为y=kx+b,把A(3,0),B(0,3)代入得,解得,∴y=-x+3,把x=0代入,得,∴D(0,1),设P(x,2x+1),Q(x,-x+3)∵,∴,解得x=2或x=,∴点的横坐标为2或.故答案为:2或.【点睛】本题考查了待定系数法求一次函数解析式,坐标图形的性质,以及两点间的距离,根据两点间的距离列出方程是解答本题的关键.14、.【解析】试题分析:一次函数的增减性有两种情况:①当时,函数的值随x的值增大而增大;②当时,函数y的值随x的值增大而减小.由题意得,函数的,故y的值随x的值增大而增大.∵,∴.考点:一次函数图象与系数的关系.15、8.4×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000084=8.4×10-6,故答案为:8.4×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.16、1440°36°【分析】根据多边形的内角和公式以及外角和即可得出结果.【详解】解:正十边形的内角和=(10-2)×180°=1440°,

∵正十边形的每个外角都相等,∴每个外角的度数=.

故答案为:;.【点睛】本题考查多边形的内角和计算公式以及多边形的外角和.多边形内角和定理:多边形内角和等于(n-2)•180°;多边形的外角和为360°.17、(1,2)【详解】关于x轴对称,则两个点的横坐标不变,纵坐标互为相反数,故B点的坐标为(1,2).18、在一个三角形中三个角都大于60°【分析】根据反证法的第一步是假设结论不成立进行解答即可.【详解】由反证法的一般步骤,第一步是假设命题的结论不成立,所以应假设在一个三角形中三个角都大于60°,故答案为:在一个三角形中三个角都大于60°.【点睛】本题考查反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.三、解答题(共66分)19、(1)①;②见解析;(2)满足,证明见解析【分析】(1)①由角平分线与垂直平分线的性质证明:,再利用三角形的内角和定理可得答案;②先利用角平分线的性质证明:,再利用证明从而可得结论;(2)过点作于点,证明:,再证明,可得,再利用线段的和差可得答案.【详解】(1)①解:∵平分∴又∵是的垂直平分线∴∴,∴又∵∴;②证明:∵平分,且,∴,在中,∴,;(2)解:线段、、之间满足,证明如下:过点作于点,∵是的垂直平分线,且、、共线∴也是的垂直平分线∴又∴是等腰直角三角形.∴∴是等腰直角三角形.∴∵平分,且,∴∴,在和中∴∴,∴.【点睛】本题考查的是三角形的内角和定理,角平分线的性质,垂直平分线的性质,直角三角形全等的判定与性质,含的直角三角形的性质,掌握以上知识是解题的关键.20、(1)Q(1.5,0),意义:甲、乙两人分别从A,B两地同时出发后,经过1.5小时两人相遇;(2)甲、乙的速度分别为12km/h、8km/h【分析】(1)根据待定系数法,求出直线PQ解析式,从而求出点Q得坐标,再说出它的实际意义,即可;(2)设甲的速度为akm/h,乙的速度为bkm/h,根据图象列出二元一次方程组,即可求解.【详解】(1)设直线PQ解析式为:y=kx+b,把已知点P(0,30),E(,20)代入得:,解得:,∴直线PQ解析式为:y=﹣20x+30,∴当y=0时,x=1.5,∴Q(1.5,0).它的实际意义是:甲、乙两人分别从A,B两地同时出发后,经过1.5小时两人相遇;(2)设甲的速度为akm/h,乙的速度为bkm/h,由第(1)题得,甲、乙经过1.5小时两人相遇;由图象得:第h时,甲到B地,∴,解得:.答:甲、乙的速度分别为12km/h、8km/h.【点睛】本题主要考查一次函数的实际应用,掌握待定系数法以及函数图象上点的实际意义,是解题的关键.21、(1)120,2,1;(2)线段PM所表示的y与x之间的函数表达式是y=﹣60x+300,线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【分析】(1)根据题意和图象中的数据,可以求得a、b的值以及AB两地之间的距离;(2)根据(1)中的结果和函数图象中的数据,可以求得线段PM、MN所表示的y与x之间的函数表达式;(3)根据题意,可以写出甲、乙两车距离车站C的路程之和和s之间的函数关系式,然后利用一次函数的性质即可解答本题.【详解】(1)两车的速度为:300÷5=60km/h,a=60×(7﹣5)=120,b=7﹣5=2,AB两地的距离是:300+120=1.故答案为:120,2,1;(2)设线段PM所表示的y与x之间的函数表达式是y=kx+b,,得,即线段PM所表示的y与x之间的函数表达式是y=﹣60x+300;设线段MN所表示的y与x之间的函数表达式是y=mx+n,,得,即线段MN所表示的y与x之间的函数表达式是y=60x﹣300;(3)设DE对应的函数解析式为y=cx+d,,得,即DE对应的函数解析式为y=﹣60x+120,设EF对应的函数解析式为y=ex+f,,得,即EF对应的函数解析式为y=60x﹣120,设甲、乙两车距离车站C的路程之和为skm,当0≤x≤2时,s=(﹣60x+300)+(﹣60x+120)=﹣120x+1,则当x=2时,s取得最小值,此时s=180,当2<x≤5时,s=(﹣60x+300)+(60x﹣120)=180,当5≤x≤7时,s=(60x﹣300)+(60x﹣120)=120x﹣1,则当x=5时,s取得最小值,此时s=180,由上可得:行驶时间x满足2≤x≤5时,甲、乙两车距离车站C的路程之和最小.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.22、⑴⑵如图,⑶B′(2,1)【分析】(1)易得y轴在C的右边一个单位,x轴在C的下方3个单位;(2)作出A,B,C三点关于y轴对称的三点,顺次连接即可;(3)根据所在象限及距离坐标轴的距离可得相应坐标.【详解】解:(1)如图;(2)如图;(3)点B′的坐标为(2,1).23、(1)甲、乙两车的速度分别是、;(2)间的路程是.【分析】(1)设甲车的速度是,则乙车的速度是,再根据“甲车行驶350km所用的时间与乙车行驶250km所用的时间相同”列出出分式方程,解方程即可;(2)设间的路程是,根据“甲车出发后,在途中因车辆故障耽搁了20分钟,但仍比乙车提前1小时到达目的地”列出方程,解方程即可.【详解】(1)设甲车的速度是,则乙车的速度是,由题意列方程解得,经检验是原方程的解,则,所以,甲、乙两车的速度分别是、;(2)设间的路程是,由题意列方程解得,所以,间的路程是.【点睛】考查了方式方程的应用,解题关键将实际问题转换成方程问题和找出题中的等量关系.24、秋千绳索长14.1尺【分析】设秋千绳索长为x,由题意易得OA=OB,BD=1,则AE=4,进而OE=x-4,最后根据勾股定理可进行求解.【详解】解:设秋千绳索长为x,由题意得OA=OB=x,BD=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论