2023届云南省昆明市祯祥中学数学八上期末质量检测模拟试题含解析_第1页
2023届云南省昆明市祯祥中学数学八上期末质量检测模拟试题含解析_第2页
2023届云南省昆明市祯祥中学数学八上期末质量检测模拟试题含解析_第3页
2023届云南省昆明市祯祥中学数学八上期末质量检测模拟试题含解析_第4页
2023届云南省昆明市祯祥中学数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若点和点关于轴对称,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限2.若是完全平方式,则m的值等于().A.3 B.-5 C.7 D.7或-13.已知点、点关于轴对称,点在第()象限A.一 B.二 C.三 D.四4.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50° B.70° C.75° D.80°5.如图,AD平分∠BAC交BC于点D,DE⊥AB于点E,DF⊥AC于点F,若S△ABC=12,DF=2,AC=3,则AB的长是()A.2 B.4 C.7 D.96.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.7.如图,在中,,点是和角平分线的交点,则等于()A. B. C. D.8.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定9.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.10.多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条 B.8条 C.9条 D.12条二、填空题(每小题3分,共24分)11.实数的平方根是____________.12._______.13.若时,则的值是____________________.14.如图,直线,,,则的度数是.15.如图,△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,若∠A=∠30°,∠CEB=70°,则∠ACD=_____°.16.如图,已知点,分别在边和上,点在的内部,平分.若,则的度数为______.17.已知,,,为正整数,则_________.18.因式分解=.三、解答题(共66分)19.(10分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为______;(2)当△PMN所放位置如图②所示时,求证:∠PFD−∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.20.(6分)在综合实践课上,老师以“含30°的三角板和等腰三角形纸片”为模具与同学们开展数学活动.已知,在等腰三角形纸片ABC中,CA=CB=5,∠ACB=120°,将一块含30°角的足够大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如图所示放置,顶点P在线段BA上滑动(点P不与A,B重合),三角尺的直角边PM始终经过点C,并与CB的夹角∠PCB=α,斜边PN交AC于点D.(1)特例感知当∠BPC=110°时,α=°,点P从B向A运动时,∠ADP逐渐变(填“大”或“小”).(2)合作交流当AP等于多少时,△APD≌△BCP,请说明理由.(3)思维拓展在点P的滑动过程中,△PCD的形状可以是等腰三角形吗?若可以,请求出夹角α的大小;若不可以,请说明理由.21.(6分)在中,,,,垂足为,且.,其两边分别交边,于点,.(1)求证:是等边三角形;(2)求证:.22.(8分)计算(1);(2).23.(8分)如图,和相交于点,并且,.(1)求证:.证明思路现在有以下两种:思路一:把和看成两个三角形的边,用三角形全等证明,即用___________证明;思路二:把和看成一个三角形的边,用等角对等边证明,即用________证明;(2)选择(1)题中的思路一或思路二证明:.24.(8分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)25.(10分)如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.26.(10分)如图,在中,∠.(1)尺规作图:作的平分线交于点;(不写作法,保留作图痕迹)(2)已知,求的度数.

参考答案一、选择题(每小题3分,共30分)1、D【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,1)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-1.解得a=1,b=−2.则点C(a,b)在第四象限,故选:D.【点睛】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-1是解题关键.2、D【分析】根据完全平方公式:,即可列出关于m的方程,从而求出m的值.【详解】解:∵是完全平方式∴∴解得:m=7或-1故选:D.【点睛】此题考查的是根据完全平方公式求多项式的系数,掌握完全平方公式的特征是解决此题的关键.3、C【分析】根据点A、点B关于轴对称,求出a,b的值,然后根据象限点的符号特点即可解答.【详解】∵点、点关于轴对称,∴a=3,b=3,∴点P的坐标为,∴点P在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.4、B【解析】分析:根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.详解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.点睛:本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5、D【解析】∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF=2,∵S△ABC=S△ABD+S△ACD,∴12=×AB×DE+×AC×DF,∴24=AB×2+3×2,∴AB=9,故选D.6、C【分析】根据中心对称图形和轴对称图形对各选项分析判断即可得解.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C【分析】根据三角形的内角和定理和角平分线的定义,得到,然后得到答案.【详解】解:∵在中,,∴,∵BD平分∠ABC,DC平分∠ACB,∴,∴,∴;故选:C.【点睛】本题考查了三角形的内角和定理和角平分线的定义,解题的关键是熟练掌握所学的定理和定义进行解题,正确得到.8、C【分析】已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得

BD===9,

在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.

②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.

故选:C.【点睛】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.9、B【详解】x﹣3≤3x+1,移项,得x-3x≤1+3,合并同类项,得-2x≤4,系数化为1,得x≥﹣2,其数轴上表示为:.故选B.10、C【分析】设这个多边形是n边形.由多边形外角和等于360°构建方程求出n即可解决问题.【详解】解:设这个多边形是n边形.由题意=180°﹣150°,解得n=12,∴则从该多边形一个顶点出发,可引出对角线的条数为12﹣3=9条,故选:C.【点睛】本题考查了多边形的内角与外角,多边形的对角线等知识,解题的关键是熟练掌握多边形外角和等于360°.二、填空题(每小题3分,共24分)11、【分析】直接利用平方根的定义计算即可.【详解】∵±的平方是,∴的平方根是±.故答案为±.【点睛】本题考查了平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.12、1【分析】根据负整数指数幂,零指数幂,整数指数幂的运算法则计算即可.【详解】原式=+1-=1,故答案为:1.【点睛】本题考查了实数的运算,掌握负整数指数幂,零指数幂,整数指数幂的运算法则是解题关键.13、-1【分析】先根据整式的乘法公式进行化简,再代入x即可求解.【详解】==把代入原式=-2+1=-1故答案为:-1.【点睛】此题主要考查整式的化简求值,解题的关键是熟知整式的运算法则.14、18°【分析】由平行可得∠4=∠1,再根据外角定理可得∠2+∠1=∠4,即可求出∠1.【详解】∵a∥b,∴∠4=∠1=70°,∵∠2=12°,∴∠1=∠4-∠2=18°.故答案为:18°.【点睛】本题考查平行的性质和外角定理,关键在于熟练掌握相关基础知识.15、40【分析】根据全等三角形的性质可得CE=BC,∠ACB=∠DCE,根据等腰三角形的性质可得∠B的度数,进而可得∠ECB的度数,根据等量代换可证明∠ACD=∠ECB,即可得答案.【详解】∵△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,∴∠ACB=∠DCE,CE与BC是对应边,即CE=BC,∴∠B=∠CEB=70°,∴∠ECB=180°-2×70°=40°,∵∠ACD+∠ACE=∠ECB+∠ACE,∴∠ACD=∠ECB=40°.故答案为40【点睛】本题考查了全等三角形的性质及等腰三角形的性质,熟练掌握相关性质是解题关键.16、1【解析】根据得到AC∥DE,,再根据平分得到,根据平行的性质即可求出的度数.【详解】∵∴AC∥DE,,∵平分∴又AC∥DE∴=故答案为:1.【点睛】此题主要考查角度求解,解题的关键是熟知平行线的性质与判定.17、【分析】逆用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形得出答案.【详解】解:,,,为正整数,,.故答案为:.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握运算法则是解题关键.18、.【详解】试题分析:原式=.故答案为.考点:提公因式法与公式法的综合运用.三、解答题(共66分)19、(1)∠PFD+∠AEM=90°;(2)见解析;(3)45°【分析】(1)过点P作PH∥AB,然后根据平行于同一条直线的两直线平行可得PH∥AB∥CD,根据平行线的性质可得∠AEM=∠MPH,∠PFD=∠NPH,然后根据∠MPH+∠NPH=90°和等量代换即可得出结论;(2)过点P作PG∥AB,然后根据平行于同一条直线的两直线平行可得PG∥AB∥CD,根据平行线的性质可得∠AEM=∠MPG,∠PFD=∠NPG,然后根据∠NPG-∠MPG=90°和等量代换即可证出结论;(3)设AB与PN交于点H,根据三角形的内角和定理即可求出∠PHE,然后根据平行线的性质可得∠PFO=∠PHE,然后根据三角形外角的性质即可求出结论.【详解】解:(1)过点P作PH∥AB∵AB∥CD,∴PH∥AB∥CD,∴∠AEM=∠MPH,∠PFD=∠NPH∵∠MPN=90°∴∠MPH+∠NPH=90°∴∠PFD+∠AEM=90°故答案为:∠PFD+∠AEM=90°;(2)过点P作PG∥AB∵AB∥CD,∴PG∥AB∥CD,∴∠AEM=∠MPG,∠PFD=∠NPG∵∠MPN=90°∴∠NPG-∠MPG=90°∴∠PFD-∠AEM=90°;(3)设AB与PN交于点H∵∠P=90°,∠PEB=15°∴∠PHE=180°-∠P-∠PEB=75°∵AB∥CD,∴∠PFO=∠PHE=75°∴∠N=∠PFO-∠DON=45°.【点睛】此题考查的是平行线的判定及性质、三角形内角和定理和三角形外角的性质,掌握作平行线的方法、平行线的判定及性质、三角形内角和定理和三角形外角的性质是解决此题的关键.20、(1)40°,小;(2)当AP=5时,△APD≌△BCP,理由详见解析;(3)当α=45°或90°时,△PCD是等腰三角形.【分析】(1)先根据三角形内角和定理求出∠B的度数,再一次运用三角形内角和定理即可求出的度数;根据三角形内角和定理即可判断点P从B向A运动时,∠ADP的变化情况;(2)先根据三角形外角等于与它不相邻的两个内角和得到∠APC=∠B+α=30°+∠PCB,再证明∠APD=∠BCP,根据全等三角形的判定定理,即可得到当AP=5时,△APD≌△BCP.(3)根据等腰三角形的判定,分三种情况讨论即可得到;【详解】解:(1)∵CA=CB=5,∠ACB=120°,∴∠B=∠A==30°,∴,∵三角尺的直角边PM始终经过点C,∴再移动的过程中,∠APN不断变大,∠A的度数没有变化,∴根据三角形的内角和定理,得到∠ADP逐渐变小;故答案为:40°,小.(2)当AP=5时,△APD≌△BCP.理由如下:∵∠ACB=120°,CA=CB,∴∠A=∠B=30°.又∵∠APC是△BPC的一个外角,∴∠APC=∠B+α=30°+∠PCB,∵∠APC=∠DPC+∠APD=30°+∠APD,∴∠APD=∠BCP,当AP=BC=5时,在△APD和△BCP中,∴△APD≌△BCP(ASA);(3)△PCD的形状可以是等腰三角形.根据题意得:∠PCD=120°﹣α,∠CPD=30°,有以下三种情况:①当PC=PD时,△PCD是等腰三角形,∴∠PCD=∠PDC==75°,即120°﹣α=75°,∴α=45°;②当DP=DC时,△PCD是等腰三角形,∴∠PCD=∠CPD=30°,即120°﹣α=30°,∴α=90°;③当CP=CD时,△PCD是等腰三角形,∴∠CDP=∠CPD=30°,∴∠PCD=180°﹣2×30°=120°,即120°﹣α=120°,∴α=0°,此时点P与点B重合,不符合题意,舍去.综上所述,当α=45°或90°时,△PCD是等腰三角形.【点睛】本题主要考查了全等三角形的判定(ASA)、等腰三角形的判定、三角形的内角和定理(三角形的内角和是180°),熟练掌握全等三角形的判定定理是解题的关键.21、(1)详见解析;(2)详见解析.【分析】(1)连接BD,根据等腰三角形性质得∠BAD=∠DAC=×120°,再根据等边三角形判定可得结论;(2)根据等边三角形性质得∠ABD=∠ADB=60°,BD=AD,证△BDE≌△ADF(ASA)可得.【详解】(1)证明:连接BD,

∵AB=AC,AD⊥BC,

∴∠BAD=∠DAC=∠BAC,

∵∠BAC=120°,

∴∠BAD=∠DAC=×120°=60°,

∵AD=AB,

∴△ABD是等边三角形;

(2)证明:∵△ABD是等边三角形,

∴∠ABD=∠ADB=60°,BD=AD

∵∠EDF=60°,

∴∠BDE=∠ADF,

在△BDE与△ADF中,

∴△BDE≌△ADF(ASA),

∴BE=AF.【点睛】本题考查了全等三角形的性质定理与判定定理、等边三角形的性质,解决本题的关键是证明△BDE≌△ADF.22、(1);(2)1.【分析】(1)根据二次根式的乘除法则运算和零指数幂的意义计算;

(2)利用完全平方公式、负整数指数幂和二次根式的乘法法则运算.【详解】解:(1)原式.(2)原式.【点睛】本题考查二次根式的混合运算,掌握二次根式的性质、二次根式的混合运算法则是解题的关键.23、(1);;(2)证明详见解析.【分析】(1)思路一:可通过证明,利用全等三角形对应边相等可得;思路二:可通过证明利用等角对等边可得;(2)任选一种思路证明即可.思路二:利用SSS证明,可得,利用等角对等边可得.【详解】(1)(2)选择思路二,证明如下:在和中∴.∴.∴.【点睛】本题主要考查了全等三角形的判定与性质,还设计了等腰三角形等角对等边的性质,灵活利用全等三角形的性质是解题的关键.24、(1)作图见解析;(2)B(﹣3,﹣1),C(1,1);(3)作图见解析.【解析】试题分析:(1)根据点的坐标为(0,3),即可建立正确的平面直角坐标系;

(2)观察建立的直角坐标系即可得出答案;

(3)分别作点关于轴的对称点连接则即为所求.试题解析:(1)所建立的平面直角坐标系如下所示(2)点和点的坐标分别为:(3)所作△如下图所示.25、(1)△ACP与△BPQ全等,理由详见解析;(2)PC⊥PQ,证明详见解析;(3)当t=2s,x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论