2023届陕西省榆林市米脂县数学九上期末学业质量监测试题含解析_第1页
2023届陕西省榆林市米脂县数学九上期末学业质量监测试题含解析_第2页
2023届陕西省榆林市米脂县数学九上期末学业质量监测试题含解析_第3页
2023届陕西省榆林市米脂县数学九上期末学业质量监测试题含解析_第4页
2023届陕西省榆林市米脂县数学九上期末学业质量监测试题含解析_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知,一次函数与反比例函数在同一直角坐标系中的图象可能()A. B.C. D.2.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为1.其中,正确结论的个数为()A.1个 B.2个 C.1个 D.4个3.在同一个直角坐标系中,一次函数y=ax+c,与二次函数y=ax2+bx+c图像大致为()A. B. C. D.4.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B.的平方根是±4C.有公共顶点的两个角是对顶角 D.等腰三角形两底角相等5.已知是关于的一元二次方程的两个根,且满足,则的值为()A.2 B. C.1 D.6.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(-1,0);⑤当1<x<4时,有y2<y1,其中正确的是(

)A.①④⑤ B.①③④⑤ C.①③⑤ D.①②③7.已知是关于的反比例函数,则()A. B. C. D.为一切实数8.已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD9.已知⊙O的半径是6,点O到直线l的距离为5,则直线l与⊙O的位置关系是A.相离 B.相切 C.相交 D.无法判断10.下列函数是关于的反比例函数的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心,若AB=2,则DE=______.12.比较三角函数值的大小:sin30°_____cos30°(填入“>”或“<”).13.如图,在Rt△ABC中,∠ABC=90°,BD⊥AC,垂足为点D,如果BC=4,sin∠DBC=,那么线段AB的长是_____.14.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有_____个〇.15.如图,物理老师为同学们演示单摆运动,单摆左右摆动中,在的位置时俯角,在的位置时俯角.若,点比点高.则从点摆动到点经过的路径长为________.16.如图,矩形的对角线、相交于点,AB与BC的比是黄金比,过点C作CE∥BD,过点D作DE∥AC,DE、交于点,连接AE,则tan∠DAE的值为___________.(不取近似值)17.已知点A关于原点的对称点坐标为(﹣1,2),则点A关于x轴的对称点的坐标为_________18.已知正方形的边长为1,为射线上的动点(不与点重合),点关于直线的对称点为,连接,,,.当是等腰三角形时,的值为__________.三、解答题(共66分)19.(10分)如图,是圆的直径,点在圆上,分别连接、,过点作直线,使.求证:直线与圆相切.20.(6分)某苗圃用花盆培育某种花苗,经过试验发现,每盆植人3株时,平均每株盈利3元.在同样的栽培条件下,若每盆增加1株,平均每株盈利就减少0.5元,要使每盆的盈利为10元,且每盆植入株数尽可能少,每盆应植入多少株?21.(6分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.22.(8分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)请比较①摸出的2个球颜色相同②摸出的2个球中至少有1个白球,这两种情况哪个概率大,请说明理由23.(8分)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.(1)求抛物线的解析式;(2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?(3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.24.(8分)在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.25.(10分)解下列方程:(1)x2+2x﹣3=0;(2)x(x﹣4)=12﹣3x.26.(10分)已知二次函数的图象过点A(1,0),B(-2,0),C(0,2),求这个函数的解析式.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据反比例函数图象确定b的符号,结合已知条件求得a的符号,由a,b的符号确定一次函数图象所经过的象限.【详解】解:若反比例函数经过第一、三象限,则.所以.则一次函数的图象应该经过第一、二、三象限;若反比例函数经过第二、四象限,则a<1.所以b>1.则一次函数的图象应该经过第二、三、四象限.故选项A正确;故选A.【点睛】本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.2、D【解析】本题考察二次函数的基本性质,一元二次方程根的判别式等知识点.【详解】解:∵,∴抛物线的对称轴<0,∴该抛物线的对称轴在轴左侧,故①正确;∵抛物线与轴最多有一个交点,∴∴关于的方程中∴关于的方程无实数根,故②正确;∵抛物线与轴最多有一个交点,∴当时,≥0正确,故③正确;当时,,故④正确.故选D.【点睛】本题的解题关键是熟悉函数的系数之间的关系,二次函数和一元二次方程的关系,难点是第四问的证明,要考虑到不等式的转化.3、D【分析】先分析一次函数,得到a、c的取值范围后,对照二次函数的相关性质是否一致,可得答案.【详解】解:依次分析选项可得:

A、分析一次函数y=ax+c可得,a>0,c>0,二次函数y=ax2+bx+c开口应向上;与图不符.

B、分析一次函数y=ax+c可得,a<0,c>0,二次函数y=ax2+bx+c开口应向下,在y轴上与一次函数交于同一点;与图不符.

C、分析一次函数y=ax+c可得,a<0,c<0,二次函数y=ax2+bx+c开口应向下;与图不符.

D、一次函数y=ax+c和二次函数y=ax2+bx+c常数项相同,在y轴上应交于同一点;分析一次函数y=ax+c可得a<0,二次函数y=ax2+bx+c开口向下;符合题意.

故选:D.【点睛】本题考查一次函数、二次函数的系数与图象的关系,有一定难度,注意分析简单的函数,得到信息后对照复杂的函数.4、D【详解】解:A、如果a+b=0,那么a=b=0,或a=﹣b,错误,为假命题;B、=4的平方根是±2,错误,为假命题;C、有公共顶点且相等的两个角是对顶角,错误,为假命题;D、等腰三角形两底角相等,正确,为真命题;故选D.5、B【分析】根据根与系数的关系,即韦达定理可得,易求,从而可得,解可求,再利用根的判别式求出符合题意的.【详解】由题意可得,a=1,b=k,c=-1,∵满足,∴①根据韦达定理②把②式代入①式,可得:k=-2故选B.【点睛】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合进行解题.6、C【分析】①根据对称轴x=1,确定a,b的关系,然后判定即可;②根据图象确定a、b、c的符号,即可判定;③方程ax2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y2<y1.【详解】解:①∵对称轴为:x=1,∴则a=-2b,即2a+b=0,故①正确;∵抛物线开口向下∴a<0∵对称轴在y轴右侧,∴b>0∵抛物线与y轴交于正半轴∴c>0∴abc<0,故②不正确;∵抛物线的顶点坐标A(1,3)∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.7、B【分析】根据题意得,,即可解得m的值.【详解】∵是关于的反比例函数∴解得故答案为:B.【点睛】本题考查了反比例函数的性质以及定义,掌握反比例函数的指数等于是解题的关键.8、D【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,

∴∠COM=∠COD,故A选项正确;

∵OM=ON=MN,

∴△OMN是等边三角形,

∴∠MON=60°,

∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON,

∴∠OCD=∠OCM=,

∴∠MCD=,

又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,

∴MN∥CD,故C选项正确;

∵MC+CD+DN>MN,且CM=CD=DN,

∴3CD>MN,故D选项错误;

故选D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.9、C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.10、B【分析】根据反比例函数的定义进行判断.【详解】A.,是一次函数,此选项错误;B.,是反比例函数,此选项正确;C.,是二次函数,此选项错误;D.,是y关于(x+1)的反比例函数,此选项错误.故选:B【点睛】本题考查了反比例函数的定义,解题的关键是掌握反比例函数的定义.二、填空题(每小题3分,共24分)11、1【解析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=1.故答案是:1.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.12、<【分析】直接利用特殊角的三角函数值分别代入比较得出答案.【详解】解:∵sin30°=,cos30°=.∴sin30°<cos30°.故答案为:<.【点睛】本题主要考查了特殊角的三角函数值,掌握特殊角的三角函数值是解题关键.13、2.【分析】在中,根据直角三角形的边角关系求出CD,根据勾股定理求出BD,在在中,再求出AB即可.【详解】解:在Rt△BDC中,∵BC=4,sin∠DBC=,∴,∴,∵∠ABC=90°,BD⊥AC,∴∠A=∠DBC,在Rt△ABD中,∴,故答案为:2.【点睛】考查直角三角形的边角关系,勾股定理等知识,在不同的直角三角形中利用合适的边角关系式正确解答的关键.14、1【解析】根据题目中的图形,可以发现〇的变化规律,从而可以得到第2019个图形中〇的个数.【详解】由图可得,第1个图象中〇的个数为:,第2个图象中〇的个数为:,第3个图象中〇的个数为:,第4个图象中〇的个数为:,……∴第2019个图形中共有:个〇,故答案为:1.【点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现图形中〇的变化规律,利用数形结合的思想解答.15、【分析】如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,由题意可得∠AOP=60°,∠BOQ=30°,进而得∠AOB=90°,设OA=OB=x,分别在Rt△AOP和Rt△BOQ中,利用解直角三角形的知识用含x的代数式表示出OP和OQ,从而可得关于x的方程,解方程即可求出x,然后再利用弧长公式求解即可.【详解】解:如图,过点A作AP⊥OC于点P,过点B作BQ⊥OC于点Q,∵∠EOA=30°,∠FOB=60°,且OC⊥EF,∴∠AOP=60°,∠BOQ=30°,∴∠AOB=90°,设OA=OB=x,则在Rt△AOP中,OP=OAcos∠AOP=x,在Rt△BOQ中,OQ=OBcos∠BOQ=x,由PQ=OQ﹣OP可得:x﹣x=7,解得:x=7+7cm,则从点A摆动到点B经过的路径长为cm,故答案为:.【点睛】本题考查了解直角三角形的应用和弧长公式的计算,属于常考题型,正确理解题意、熟练掌握解直角三角形的知识是解题的关键.16、【分析】根据AB与BC的比是黄金比得到AB∶BC=,连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,证明四边形CEDO是菱形,得到,,即可求出tan∠DAE的值;【详解】解:∵AB与BC的比是黄金比,∴AB∶BC=连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形的对角线、相交于点,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴,∴,tan∠DAE,故答案为:;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;17、(1,2)【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标.【详解】解:∵点A关于原点的对称点的坐标是(-1,2),∴点A的坐标是(1,-2),∴点A关于x轴的对称点的坐标是(1,2),故答案为:(1,2).【点睛】本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、或或【分析】以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形.然后分别对这三种情况进行讨论即可.【详解】如图,以B为圆心,以AB长为半径画弧,以C为圆心,以CD长为半径画弧,两弧分别交于,此时都是以CD为腰的等腰三角形;作CD的垂直平分线交弧AC于点,此时以CD为底的等腰三角形(1)讨论,如图作辅助线,连接,作交AD于点P,过点,作于Q,交BC于F,为等边三角形,正方形ABCD边长为1在四边形中∴为含30°的直角三角形(2)讨论,如图作辅助线,连接,作交AD于点P,连接BP,过点,作于Q,交AB于F,∵EF垂直平分CD∴EF垂直平分AB为等边三角形在四边形中(3)讨论,如图作辅助线,连接,过作交AD的延长线于点P,连接BP,过点,作于Q,此时在EF上,不妨记与F重合为等边三角形,在四边形中故答案为:或或.【点睛】本题主要考查等腰三角形的定义和解直角三角形,注意分情况讨论是解题的关键.三、解答题(共66分)19、见解析【分析】根据直径所对的圆周角是直角,可得,然后根据直角三角形的性质和已知条件即可证出,最后根据切线的判定定理即可证出直线与圆相切.【详解】证明:∵是圆的直径∴∴∵∴,即∵点在圆上∴直线与圆相切.【点睛】此题考查的是圆周角定理的推论和切线的判定,掌握直径所对的圆周角是直角和切线的判定定理是解决此题的关键.20、4株【分析】根据已知假设每盆花苗增加株,则每盆花苗有株,得出平均单株盈利为元,由题意得求出即可。【详解】解:设每盆花苗增加株,则每盆花苗有株,平均单株盈利为:元,由题意得:.化简,整理,.解这个方程,得,,则,,每盆植入株数尽可能少,盆应植4株.答:每盆应植4株.【点睛】此题考查了一元二次方程的应用,根据每盆花苗株数平均单株盈利总盈利得出方程是解题关键.21、证明见解析【解析】试题分析:连接OC,OD,根据弦相等,得出它们所对的弧相等,得到=,再得到它们所对的圆心角相等,证明得到又因为即可证明.试题解析:证明:方法一:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,,,,,,,.方法二:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,∵∠CAO=∠CAE+∠EAO,∠AEC=∠AOC+∠EAO,∴∠CAO=∠AEC,在中,∴∠ACO=∠CAO,∴∠ACO=∠AEC,,,.方法三:连接AD,OC,OD,∵AC=DB,=,∴∠ADC=∠DAB,∴CD∥AB,∴∠AEC=∠DCO,∵AC=CD,AO=DO,∴CO⊥AD,∴∠ACO=∠DCO,∴∠ACO=∠AEC,∴AC=AE,∵AC=CD,∴AE=CD.22、(1)摸出的2个球都是白球的概率为;(2)概率最大的是摸岀的2个球中至少有1个白球.理由见解析.【分析】(1)先画树状图展示所以6种等可能的结果,其中摸出的2个球都是白球的有2种结果,然后根据概率定义求解.(2)根据树状图可知:共有6种等可能的结果,其中摸出的2个球颜色相同的有3种结果,摸出的2个球中至少有1个白球的有5种结果,根据概率公式分别计算出各自的概率,再比较大小即可.【详解】(1)画树状图如下:由树状图知,共有6种等可能结果,其中摸出的2个球都是白球的有2种结果,所以摸出的2个球都是白球的概率为;(2)∵摸出的2个球颜色相同概率为、摸出的2个球中至少有1个白球的概率为,∴概率最大的是摸岀的2个球中至少有1个白球.【点睛】本题考查了列表法与树状图法:先利用列举法或树形图法不重不漏地列举出所有可能的结果求出,再从中选出符合事件A或B的结果数目,求出概率.23、(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,【分析】(1)根据正方形的性质,可得OA=OC,∠AOC=∠DGE,根据余角的性质,可得∠OCD=∠GDE,根据全等三角形的判定与性质,可得EG=OD=1,DG=OC=2,根据待定系数法,可得函数解析式;(2)分类讨论:若△DFP∽△COD,根据相似三角形的性质,可得∠PDF=∠DCO,根据平行线的判定与性质,可得∠PDO=∠OCP=∠AOC=90,根据矩形的判定与性质,可得PC的长;若△PFD∽△COD,根据相似三角形的性质,可得∠DPF=∠DCO,,根据等腰三角形的判定与性质,可得DF于CD的关系,根据相似三角形的相似比,可得PC的长;(3)分类讨论:当四边形是平行四边形时,四边形是平行四边形时,四边形是平行四边形时,根据一组对边平行且相等的四边形式平行四边,可得答案.【详解】解:(1)过点作轴于点.∵四边形是边长为2的正方形,是的中点,∴,,.∵,∴.∵,∴.在和中,∴,,.∴点的坐标为.∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,将、点的坐标代入解析式,得,解得.∴抛物线的解析式为;(2)①若,则,,∴,∴四边形是矩形,∴,∴;②若,则,∴.∴.∴,∴.∵,∴,∴.∵,∴,,综上所述:或时,以点,,为顶点的三角形与相似:(3)存在,①若以DE为平行四边形的对角线,如图2,此时,N点就是抛物线的顶点(2,),由N、E两点坐标可求得直线NE的解析式为:y=x;∵DM∥EN,∴设DM的解析式为:y=x+b,将D(1,0)代入可求得b=−,∴DM的解析式为:y=x−,令x=2,则y=,∴M(2,);②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,∵CM∥DE,DE⊥CD,∴CM⊥CD,∵OC⊥CB,∴∠OCD=∠BCM,在△OCD和△BCM中,∴△OCD≌△BCM(ASA),∴CM=CD=DE,BM=OD=1,∴CDEM是平行四边形,即N点与C占重合,∴N(0,2),M(2,3);③N点在抛物

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论