版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计学
(多媒体教学课件)第六章抽样推断
.
.
统计学(多媒体教学课件)第六1
本章相关内容
.
.
本章教学内容
本章小结
本章思考与练习题
本章学习目的
本章重点、难点
本章参考资料
本章相关内容2
本章教学内容(6学时)
.
.
第一节抽样法的基本原理
第二节抽样误差
第三节抽样估计的方法
第四节抽样的组织形式
本章教学内容(6学时)..3.
.
第一节抽样法的基本原理
一、抽样法的概念和特点
二、有关抽样推断的几个基本概念
三、抽样法的内容..第一节抽样法的基本原理4.
.
一、抽样法的概念和特点
(一)抽样法的概念
(二)抽样法的特点
(三)抽样法的作用
..一、抽样法的概念和特点5.
.
综合指标总量指标相对指标平均指标变异指标反映总体数量特征
但在实际工作中,许多场合下我们不可能采用全面调查方法,来计算反映总体数量特征的指标。而只能采用抽样调查(即抽样推断)的方法。
例如,对某厂生产的10000只灯泡进行平均耐用时数的检验,就只能采用抽样推断的方法。又如,我国2005年粮食总产量45711万吨,城镇居民人均可支配收入7703元等这些指标数值均属抽样推断的结果。..综合指标总量指标相对指标平均指标变异指标反映总6.
.
(一)抽样法的概念(第81页)
抽样法即抽样推断就是按照随机抽样的原则,从总体中抽出一部分单位作为样本,并利用样本的实际资料计算样本指标值,然后根据样本指标对总体的数量特征(总体指标)做出具有一定可靠程度的估计和判断的一种统计分析方法。(二)抽样推断的特点
(1)属于非全面调查,按照随机原则选取调查单位;(2)抽样调查的目的在于根据部分单位的实际资料对总体的数量特征作出估计(3)抽样误差可以事先计算并且加以控制;(4)它是运用概率估计的方法。..(一)抽样法的概念(第81页)7(三)抽样调查的作用
(1)对于不可能或不必要进行全面调查的场合,抽样调查具有其独特的作用。(2)抽样调查和全面调查相结合,可以验证和补充修正全面调查的资料、数据。(3)利用抽样方法进行生产过程的质量控制。(4)抽样方法可以用来检验总体特征的某些假设,判断假设的真伪,为行动决策提供依据。.
.
(三)抽样调查的作用8.
.
抽样推断过程图例
:样本n=100随机原则总体N=10000推断(抽样误差)
(总体指标)(样本指标)K个样本
(抽样实际误差)
抽样平均误差
(可以计算)抽样推断的结果具有一定的可靠程度(置信度)..抽样推断过程图例:样本n=100随机原则总9.
.
二、有关抽样法的几个基本概念
(一)总体和样本
(二)总体参数和统计量
(三)样本容量和样本个数
(四)抽样框和抽样单元(五)重复抽样与不重复抽样..二、有关抽样法的几个基本概念(一)总体和10.
.
(一)总体和样本
1.总体(全及总体):
即统计所要认识对象的全体。总体单位数通常般用“N”表示。2.样本(样本总体):
即它是从总体中随机抽取出来,用来代表总体的那部分单位的组成集合体。样本单位数通常用“n”表示。注意:总体与样本的不同性质:总体变量总体属性总体即从一个总体中可以抽出许多个样本。样本
不是唯一确定的。总体是唯一确定的。..(一)总体和样本11.
.
(二)总体参数和统计量
总体参数(总体指标)统计量(样本指标)变量总体
变量样本
属性总体
属性样本
性质性质是唯一确定的是随机变量,它会随着样本的不同而有不同的取值总体平均数总体标准差样本平均数样本标准差总体平均数总体标准差样本平均数总体成数样本标准差样本成数..(二)总体参数和统计量12.
.
(三)样本容量和样本个数
1.样本容量:即一个样本中所包含的单位数,一般用n表示。n≥30为大样本,n<30为小样本。
2.样本个数:是指在一个总体中所有可能被抽取或可能构成的样本数目。例如:假设总体有A、B、C、D、E五个单位,若按随机重复抽取方法,从总体中随机抽取两个单位组成样本,则其样本容量为2;而所有可能的样本个数为25个。AAABACADAEBABBBCBDBECACBCCCDCEDADBDCDDDEEAEBECEDEE
注意:在实际统计中我们只是抽取一个样本,但进行抽样推断必须要考虑全部的可能样本。..(三)样本容量和样本个数1.样本容量13.
.
(四)抽样框和抽样单元
1.抽样框:
是调查对象的具体表现,它是一份包含所有抽样单元的名单,给每个抽样单元编号后,就可以按照一定的随机化程序进行抽样。
2.抽样单元:是构成抽样框的基本要素。它可以只包含一个总体单位,也可以包含若干个总体单位。
编制抽样框是抽样设计的一个重要环节,它应该包含抽样单元的名称和地理位置等有关信息,以便调查人员能找到被抽中的单元。
抽样单元与抽样框是元素与集合的关系..(四)抽样框和抽样单元1.抽样框:14.
.
(五)重复抽样与不重复抽样
即每次从具有N个单位的总体中随机抽取一个单位(登记其序号和相应的标志值)之后,又将它重新放回总体,参加下一次抽选。依次连续进行n次抽选,便构成一个容量为n的样本。
例4-1:假设总体有A、B、C、D、E五个单位,现纯随机重复抽取2个单位组成样本,求全部的可能样本个数。第一次抽取:(抽后放回)
第二次抽取:则所有可能的样本个数为:AAABACADAEBABBBCBDBECACBCCCDCEDADBDCDDDEEAEBECEDEE即:(N=5n=2)
1.重复抽样..(五)重复抽样与不重复抽样15个样本,每个样本在各次抽样中被抽取的概率都相同。.
.
重复抽样的特点:(1)在n次抽样中,总体每个单位在各次抽样中被抽取的概率都相同;(2)共可组成
又例:假设总体有A、B、C、D、E五个单位,现纯随机重复抽取3个单位组成样本,求全部的可能样本个数。(N=
5n=3)第一次抽取:则所有可能的样本个数为:(抽后放回)第二次抽取:(抽后放回)第三次抽取:
16.
.
2.不重复抽样
即每次从具有N个单位的总体中随机抽取一个单位,但在登记其序号和相应的标志值之后,就不再将它重新放回总体参加下一次的抽选。(从抽样分布角度来看,这种抽样分布实际上等同于一次从总体中同时抽取n个单位组成一个样本。
例4-1:假设总体有A、B、C、D、E五个单位,现纯随机不重复抽取2个单位组成样本,求全部的可能样本个数。(N=5n=2)第一次抽取:
第二次抽取:则所有可能的样本个数为:—
ABACADAEBA—BCBDBECACB—
CDCEDADBDC—DEEAEBECED—(抽后不放回)..2.不重复抽样即每次从具有N个单位的总体中17第一次抽取:个样本,每个样本在各次抽样中被抽取的概率都相同。.
.
不重复抽样的特点:(1)在n次抽样中,总体每个单位在各次抽样中被抽取的概率不相同;(2)可组成又假设总体有A、B、C、D、E五个单位,现纯随机不重复抽取3个单位组成样本,求全部的可能样本个数。第二次抽取:则所有可能的样本个数为:(抽后不放回)(抽后不放回)第三次抽取:第一次抽取:18.
.
三、抽样法的内容
抽样推断(统计推断)所面临的问题是对总体的数量特征不了解或了解很少,而且需要利用有限的样本信息对它进行估计和判断,以达到对总体数量特征的认识。抽样推断在由样本资料推断总体资料时,包括以下两个内容:抽样推断的内容
1.总体参数的估计
2.总体参数的假设检验
..三、抽样法的内容抽样推断(统计推断)所19.
.
1.总体参数的估计
当我们不知道总体的数量特征时,根据样本的资料对总体的数量特征进行估计的方法称为总体参数的估计。当我们对总体的变化情况不了解时,可先对总体的状况作出某种假设,然后再根据抽样推断的原理,通过样本资料对所作假设进行检验,来判断这种假设的真伪,以决定我们行动的取舍,这种推断方法称为总体参数的假设检验。2.总体参数的假设检验
..1.总体参数的估计20.
.
第二节抽样误差
一、抽样误差的概念
二、抽样平均误差的计算
三、抽样极限误差
四、抽样误差的概率度
五、抽样估计的置信度
..第二节抽样误差21(可以计算)(无法计算).
.
一、抽样误差的概念
抽样误差是指由于随机抽样的偶然因素使样本各单位的结构不足以代表总体各单位的结构,而引起样本指标与总体指标之间的绝对离差。如,抽样误差
(一)抽样实际误差
.(二)抽样平均误差
.
(可以计算)(无法计算)..一、抽样误差的概念22.
.
即是指每次抽样所得的样本指标与总体指标之间的离差,它随着样本的不同而不同,是一个随机变量。即是指所有可能出现的样本指标与总体指标之间的平均离差,即所有可能出现的样本指标与总体指标的标准差。对于一个特定的总体来说,它是固定的,而且是可以计算的。注意抽样误差与调查误差的区别。统计调查误差的种类登记性误差代表性误差系统性误差随机误差(抽样误差)(一)抽样实际误差
:(二)抽样平均误差
:..即是指每次抽样23.
.
二、抽样平均误差的计算
(一)抽样平均误差的定义公式
(二)抽样平均误差的计算方法
(三)影响抽样(平均)误差的因素
..二、抽样平均误差的计算(一)抽24k=∑f:全部可能的样本个数k
=∑f:全部可能的样本个数.
.
(一)抽样平均误差的定义公式
如前所述,抽样平均误差是反映抽样误差一般水平的指标,即所有可能出现的样本指标与总体指标的标准差。1.样本平均数的抽样平均误差
2.样本成数的抽样平均误差
k=∑f:全部可能的样本个数k=∑f:全部可能的样本25(二)抽样平均误差的计算方法
1.样本平均数的抽样平均误差
2.样本成数的抽样平均误差
.
.
(二)抽样平均误差的计算方法26.
.
1.样本平均数的抽样平均误差
(1)重复抽样:(2)不重复抽样:
注意:在实际计算抽样平均误差时,当总体标准差σ未知时,可以用样本标准差s来代替。即:..1.样本平均数的抽样平均误差27.
.
例4-3:假设有五名工人,其每小时工资分别为:12,14,16,18,20元,若按重复抽样方法从工人总体中随机抽取两个工人组成一个样本,用其样本平均工资来估计总体平均工资。试计算样本平均工资的抽样平均误差。(N=5
n=2)这一总体的平均数和标准差分别为:样本12141618201214161820
1213
1415161314151617141516171815161718191617181920
在重复抽样条件下,(N=5
n=2)所有可能的样本及样本平均工资如表5-1表4-1
样本平均数分布..例4-3:假设有五名工人,其每小时工资分别28.
.
表4-2
样本平均数分布样本序号样本平均数样本个数样本平均数离差离差平方123456789121314151617181920123454321122642608068543820-4-3-2-101234161812404121816合计-25400-100样本平均数的抽样平均误差xfxfXx-fXx2)(-..表4-2样本平均29.
.
样本平均数的抽样平均误差(用定义公式计算)(用计算公式计算)结论:第一,样本平均数的平均数等于总体平均数,即:第二,样本平均数的标准差(抽样平均误差)为总体标准差σ的..样本平均数的抽样平均误差(用定义公式计算)(用30.
.
在不重复抽样条件下,所有可能的样本及样本平均工资如右表4-3
K=5×4=20(个)样本
12141618201214161820
—
131415
16
13
—1516
17
14
15
—17
18
15
1617
—19
16
1718
19—表4-3样本平均数分布样本序号样本平均数样本个数样本平均数离差离差平方123456713141516171819224442226286064683638-3-2-10123188404818合计—20320—60xfxfXx-fXx2)(-..在不重复抽样条件下,所有可能的样本及样31.
.
样本平均数的抽样平均误差(用定义公式计算)第一,样本平均数的平均数等于总体平均数,即:第二,样本平均数的标准差(抽样平均误差)为总体标准差σ的(用计算公式计算)故,..样本平均数的抽样平均误差(用定义公式计算)第一32.
.
2.样本成数的抽样平均误差
由于总体成数可以表现为是非标志(0,1)分布的平均数,而且它的标准差也可以从总体成数推算出来,
因此,可以从样本平均数的抽样平均误差和总体标准差的关系推出样本成数的抽样平均误差的计算公式。(1)重复抽样:(2)不重复抽样:..2.样本成数的抽样平均误差33.
.
注意:在实际计算抽样平均误差时,当总体成数P未知时,可用样本成数p
来代替。即:
例4-4:要估计某高校10000名在校生的近视率,现随机从中抽取400名,检查有近视眼的学生320名,试计算样本近视率的抽样平均误差。(1)在重复抽样条件下,样本近视率的抽样平均误差为:解:根据已知条件:=2%..注意:在实际计算抽样平均误差时,当总体成数34.
.
(2)在不重复抽样条件下,样本近视率的抽样平均误差为:
计算结果表明,用样本的近视率来估计总体的近视率其抽样平均误差为2%左右(即用样本的近视率来估计总体的近视率其误差的绝对值平均说来在2%左右)。=1.96%..(2)在不重复抽样条件下,样本近视率的抽样平均35.
.
(三)影响抽样(平均)误差的因素
1.总体标志变异程度的大小(总体标准差σ的大小)。它与μ成正比例变化。2.样本容量的大小。它与μ成反比例变化。3.抽样方法的不同。重复抽样的μ总是大于不重复抽样的μ。4.抽样的组织形式。抽样的组织形式不同,抽样误差也不同。例如:要使抽样误差减少为原来的一半,则样本容量将为原来的4倍。..(三)影响抽样(平均)误差的因素36.
.
三、抽样极限误差
抽样极限误差是从另外一个角度来考虑抽样误差的问题。用样本指标估计总体指标的同时,必须要同时考虑抽样误差的大小。抽样极限误差是指抽样指标与总体指标之间抽样误差可允许的范围。又称为允许误差或抽样误差范围。它等于样本指标可允许变动的上下限与总体指标的绝对值。样本平均数的抽样极限误差样本成数的抽样极限误差上面两式可改写成以下两个不等式,即:..三、抽样极限误差37.
.
为总体平均数的估计区间(置信区间)为总体成数的估计
区间(置信区间)例如,要估计某乡粮食亩产量和总产量,从该乡2万亩粮食作物中抽取400亩,求得其平均亩产量为400公斤。如果确定抽样极限误差为5公斤,试估计该乡粮食亩产量和总产量所在的置信区间。
即该乡粮食亩产量的区间落在400±5公斤的范围内,即在395~405公斤之间。..为总体平均数的估计区间(置信区间)为总体成数38.
.
又如,要估计某高校10000名在校生的近视率,现随机从中抽取400名,计算的近视率为80%,如果确定允许误差范围为4%,试估计该高校在校生近视率所在的置信区间。
该校学生近视率的区间落在80%±4%的范围内,即在76%~84%之间。
粮食总产量在20000×(400±5)公斤,即在790~810万公斤之间。..又如,要估计某高校10000名在校生的近视率39.
.
四、抽样误差的概率度
基于概率估计要求,抽样极限误差△x
或
△p
通常需要以抽样平均误差μx
或μp
为标准单位来衡量。把抽样极限误差△x
或
△p
分别除以μx
或μp得相对数t,表示误差范围为抽样平均误差的t倍。t是测量抽样估计可靠程度的一个参数,称为抽样误差的概率度。..四、抽样误差的概率度40.
.
如在上例,已知某乡粮食亩产量的标准差为σ=80公斤,总体单位数N=20000亩,样本单位数n=400亩,求得其抽样平均误差为。如果确定抽样极限误差为5公斤,则,我们可以用概率度:表示抽样极限的误差范围,即用1.25μx
来规定误差范围的大小。..如在上例,已知某乡粮食亩产量的标准差为σ=41.
.
五、抽样估计的置信度
抽样估计的置信度就是表明样本指标与总体指标的误差不超过一定范围的概率保证程度,它一般用F(t)表示。又称抽样估计的概率保证程度。总体平均数抽样估计的置信度:总体成数抽样估计的置信度:..五、抽样估计的置信度42.
.
如前所述:
从主观愿望上讲,我们当然希望样本指标的估计值都能够落在允许的误差范围内,但由于样本指标值随着样本的变动而变动,它本身是个随机变量,因而样本指标与总体指标的误差仍然是个随机变量,并不能保证误差不超过一定范围这件事是必然的,而只能给以一定程度的概率保证。..如前所述:从主观愿望上讲,我们当然希望样本4368.27%
即抽样极限误差越大(概率度越大),则抽样估计的置信度越大,但是抽样估计的准确性越小。反之亦然。.
.
95.45%99.73%
(置信区间)(置信度)F(t)是t的函数,是概率面积。
可见F(t)与t是正比关系,而与Δ也是正比关系。当t=1当t=2当t=368.27%即抽样极限误差越大44.
.
第三节抽样估计的方法
一、总体参数的点估计
二、总体参数的区间估计
三、样本容量n的确定
..第三节抽样估计的方法45.
.
一、总体参数的点估计(第90页)
(一)点估计的概念即用样本统计量直接估计总体参数。(二)抽样估计的优良标准衡量一个样本统计量是否是总体参数的优良的估计量标准有无偏性、一致性
和有效性
。1.无偏性。即如果样本统计量的数学期望值等于被估计的总体参数本身,则该统计量是被估计参数的无偏估计量。..一、总体参数的点估计(第90页)46.
.
即当样本容量n充分大时,若样本统计量充分地靠近被估计的参数本身。则该统计量是被估计参数的一致估计量。2.一致性
。
即若一个估计量的方差样本比其它估计量的方差小,则该统计量是被估计参数的有效估计量。3.有效性
。..即当样本容量n充分大时,若样47.
.
二、总体参数的区间估计(第91页)
(一)区间估计的概念
(二)区间估计的要素
(三)区间估计的方法
..二、总体参数的区间估计(第91页)48
所构成的区间来估计总体参数,并以一定的概率保证总体参数将落在所估计的区间内。.
.
(一)区间估计的概念
在统计分析中,我们常常用一个区间及其出现的概率来估计总体参数。这种估计总体参数的方法称为区间估计。具体地说,区间估计是用估计量这一概率保证程度称为置信度,这种估计区间称为置信区间。例如:
49.
.
(二)区间估计的要素
1.估计值(样本指标)2.抽样极限误差3.置信度(概率保证程度)(三)区间估计的方法
1.总体平均数区间估计2.总体成数区间估计..(二)区间估计的要素50.
.
例4-5:从某厂生产的5000只灯泡中,随机不重复抽取100只,对其使用寿命进行调查,调查结果如表4-5。又该厂质量规定使用寿命在3000小时以下为不合格品。
表4-5使用寿命(小时)产品数量(只)3000以下3000—40004000—50005000以上2305018合计100(1)按不重复抽样方法,以95.45%的概率保证程度估计该批灯泡的平均使用寿命;(2)按不重复抽样方法,以68.27%的置信度估计该批灯泡的合格率。..例4-5:从某厂生产的5000只灯泡中,随51(1)∵N
=5000n=
100
F(t)=95.45%
t=2.
.
使用寿命(小时)组中值产品数量3000以下3000—40004000—50005000以上25003500450055002305018500010500022500099000-1480-8401601160677120021168000128000024220800合计—100434000—53440000解:样本平均数:样本标准差:(1)∵N=5000n=100F(t)=52.
.
总体平均寿命所在的置信区间为:上限:下限:样本平均寿命的抽样平均误差:即可以95.45%的概率保证程度估计该批灯泡的平均使用寿命在4195.26~4484.74小时之间。..总体平均寿命所在的置信区间为:上限:下限:样本53.
.
样本合格率:
(2)∵
n1
=98n
=100
F(t)=68.27%
t=1样本合格率的抽样平均误差:总体合格率所在的置信区间为:上限:下限:即可以68.27%的概率保证程度估计该批灯泡的合格率96.6%~99.4%之间。..样本合格率:(2)∵n154.
.
例4-6:对某批成品按不重复抽样方法抽选200件检查,其中废品8件,又知样本容量为成品总量的(1/20)。以95%的把握程度估计该批成品的废品率范围。解:
N
=4000n
=
200n1
=
8
F(t)=95%
t=1.96..例4-6:对某批成品按不重复抽样方法抽选55.
.
总体成数所在区间的上下限为:上限:下限:
即可以95%的把握程度估计该批成品的废品率范围在1.35%~6.65%之间。..总体成数所在区间的上下限为:上限:下限:56.
.
三、样本容量n的确定(第89页)
1.重复抽样的必要样本容量2.不重复抽样的必要样本容量..三、样本容量n的确定(第89页)57.
.
例4-7某市开展职工家计调查,根据历史资料该市职工家庭平均每人年收入的标准差为250元,而家庭消费的恩格尔系数(即家庭食品支出占消费总支出的比重)为65%
。现在用重复抽样的方法,要求95.45%的概率保证下,平均收入的极限误差不超过20元,恩格尔格系数的极限误差不超过4%
,求必要的样本单位数。解:F(t)=95.45%
t=
2..例4-7某市开展职工家计调查,根据历史资58.
.
答:应抽取625户家庭进行调查。注意:小数只入不舍,对同一总体进行多项调查时,选n最大者以满足共同需要。..答:应抽取625户家庭进行调查。注意:小数59.
.
第四节抽样的组织方式
一、简单随机抽样
二、类型抽样
三、等距抽样
四、整群抽样
五、多阶段抽样
..第四节抽样的组织方式60.
.
一、简单随机抽样
(一)简单随机抽样的概念
(二)简单随机的方法
(三)简单随机抽样的平均误差
..一、简单随机抽样61.
.
(一)简单随机抽样的概念
简单随机抽样是不对总体作任何加工整理,直接从总体中随机抽取调查单位的抽样调查方法。简单随机抽样是抽样中最基本的方式,它适用于均匀总体。(二)简单随机的方法
最基本的方法是抽签法和随机数字表法。适用于单位数较少的总体。1.抽签法。适用于大规模的社会经济调查中,单位数目很大的总体。2.随机数表法。..(一)简单随机抽样的概念62.
.
(三)简单随机抽样的平均误差
1.重复抽样。2.不重复抽样。..(三)简单随机抽样的平均误差63.
.
二、类型抽样
(一)类型抽样的概念
(二)类型抽样的优点
(三)类型抽样的方法
(四)类型抽样的平均误差
..二、类型抽样64.
.
(一)类型抽样的概念
类型抽样又称分层或分类抽样。它是先对总体各单位按主要标志加以分组,然后再从各组中按随机原则抽取一定单位构成样本的抽样组织方式。样本平均数:类型抽样是应用于总体内各单位在被研究标志上有明显差别或差别悬殊的总体的抽样。..(一)类型抽样的概念65.
.
(二)类型抽样的优点
1.它提高了样本代表性;
2.降低了影响抽样平均误差的总体方差。它分为等比例抽样和不等比例抽样。(三)类型抽样的优点
..(二)类型抽样的优点66.
.
(四)类型抽样的平均误差
重复抽样的平均误差:不重复抽样的平均误差:..(四)类型抽样的平均误差67.
.
例4-9某乡某种粮食播种面积20000亩,按平原和山区面积等比例抽取400亩组成样本,各组平均亩产和各组方差如下表,求抽样平均亩产和抽样平均误差,并以95%的概率估计该乡全部播种面积平均亩产的置信区间。类型抽样平均误差计算表如下:类型播种面积(亩)抽样面积(亩)样本平均亩产(公斤)亩产方差(公斤)平原140002805606400山区600012035022500合计2000040049711236解:N
=
N1
+N2n
=
n1+n220000=14000+6000400=280
+120..例4-9某乡某种粮食播种面积2000068.
.
即可以95%的概率保证该乡农作物的平均亩产在486.71公斤至507.29公斤之间。..即可以95%的概率保证该乡农作物的平均亩产69.
.
三、等距抽样
(一)等距抽样的概念
(二)等距抽样的平均误差
..三、等距抽样70•••••
•••••
••••••••••.
.
(一)等距抽样的概念
等距抽样又称机械抽样或系统抽样它是先将总体单位按某一标志排序,然后按照固定的顺序和相同的间隔来抽选样本单位的抽样组织形式。等距抽样可分为无关标志排序抽样和有关标志排序抽样两类。例如:N
=20n=
4•••••••••••••••71.
.
无关标志抽样。是指排序的标志与研究的标志无关。如:观察学生考试成绩,用姓氏笔划排序;观察产品的质量,按生产的先后顺序等。它实质上相当于简单随机抽样。有关标志抽样。是指排序的标志与被研究标志相关。如:农产品产量调查时,将地块按过去连续几年的亩产排序;家庭消费水平调查中,按收入额排序等。..无关标志抽样。72.
.
等距抽样均为不重复抽样,其平均误差的计算可分为两类:按无关标志排序时,按简单随机不重复抽样平均误差公式计算。按有关标志排序时,按类型抽样的平均误差公式计算。(二)等距抽样的平均误差
例如4-10年终在某储蓄所按定期储蓄存款进行每隔5户的等距抽样,得到如下资料。试以95.45%的概率估计平均定期存款的范围。..等距抽样均为不重复抽样,其平均误差的计算可73.
.
定期存款(元)1-100100-300300-500500-800800以上合计户数(户)581502006214484解:平均定期存款在327.6~360.4元之间,可靠程度为95.45%。..定期存款(元)1-100100-30030074.
.
四、整群抽样
(一)整群抽样的概念
(二)整群抽样的推断方法
..四、整群抽样75.
.
(一)整群抽样的概念
整群抽样也称分群抽样或集团抽样,是将总体划分为若干群,然后以群为单位从中随机抽取部分群。对中选群中的所有单位进行全面调查的抽样组织方式。100100100100100100100N
=1000R=
10(群)r=
3(群)
100100100..(一)整群抽样的概念76.
.
(二)整群抽样的推断方法
设总体中的全部单位划为R群,每群中所包含单位数为m,现从群中随机抽取r群组成样本。则,各群的样本平均数:全样本平均数:整群抽样一般为不重复抽样,其抽样误差为:群间方差:..(二)整群抽样的推断方法77.
.
五、多阶段抽样
将总体进行多层次分组,然后依次在各层中随机抽组,直到抽到总体单位,叫多阶段抽样。
实际中当总体单位很多、且分布广泛、几乎不可能从总体中直接抽取总体单位时,常采用多阶段抽样。
如:我国农产量调查就是采用多阶段抽样调查,即先从省中抽县,然后从中选的县抽乡,乡中抽村,再由中选的村中抽地块,最后从中选的地块中抽取小面积的样本单位。..五、多阶段抽样78.
.
一般在初级阶段抽样时多用分层抽样和等距抽样,在次级阶段抽样时多用等距抽样和简单随机抽样。同时,还可根据各阶段不同特点,采用不同的抽样比。如方差大的阶段,抽样比大一些,方差小的阶段,抽样比小一些。而且多阶抽样在简化抽样工作同时,抽样单位的分布较广,具有较强的代表性。多阶段抽样的平均误差计算比较复杂(略)。..一般在初级阶段抽样时多用分层抽样和等距抽样,79抽样推断培训课件804.抽样推断是运用概率估计的方法,使抽样推断的结果具有一定的可靠程度(三)抽样推断的作用1.对不可能或不必要进行全面调查的场合,可采用抽样推断的方法2.抽样调查和全面调查相结合,可以验证和补充修正全面调查的资料数据3.它可以对生产过程中产品质量的进行检查和控制4.它可以总体的某些假设进行检验,以判断这种假设的真伪,决定行动的取舍.
.
4.抽样推断是运用概率估计的方法,使抽..81二、有关抽样推断的几个基本概念
(一)总体和样本1.总体(全及总体)变量总体与属性总体2.样本(样本总体)注意总体与样本的不同性质(二)总体参数和统计量注意:总体参数与统计量的不同性质(三)样本容量和样本个数大样本与小样本
三、抽样的方法1.重复抽样及特点2.不重复抽样及特点.
.
二、有关抽样推断的几个基本概念..82一、抽样误差的概念(一)抽样实际误差(不能计算)(二)抽样实际误差(可以计算)注意登记性误差与代表性误差的区别二、抽样平均误差的计算方法(一)抽样平均误差的定义公式1.样本平均数的抽样平均误差2.样本成数的抽样平均误差第二节抽样误差注意:两种抽样方法样本个数的计算四、抽样推断的内容:总体参数的估计和总体参数的假设检验.
.
一、抽样误差的概念第二节抽样误差注意:两种抽样方法样83(二)抽样平均误差的计算方法1.样本平均数的抽样平均误差分重复抽样和不重复抽样2.样本成数的抽样平均误差分重复抽样和不重复抽样(三)影响抽样(平均)误差的因素1.总体标志变异程度的大小2.样本容量的大小3.抽样方法的不同4.抽样的组织形式三、抽样极限误差样本平均数的抽样极限误差样本成数的抽样极限误差.
.
(二)抽样平均误差的计算方法..84四、抽样误差的概率度五、抽样估计的置信度即抽样极限误差越大(概率度越大),则抽样估计的置信度越大,但是抽样估计的准确性越小。反之亦然。第三节抽样估计的方法一、总体参数的点估计(一)点估计的概念(二)抽样估计的优良标准1.无偏性2.一致性3.有效性二、总体参数的区间估计(一)区间估计的概念.
.
四、抽样误差的概率度第三节抽样估计的方法一、总体参数的点85(二)区间估计的三要素1.估计值(样本指标)2.抽样极限误差3.置信度(三)区间估计的方法
1.总体平均数区间估计2.总体成数区间估计三、样本容量n的确定(一)重复抽样的必要样本容量(二)不重复抽样的必要样本容量第四节抽样的组织方式.
.
(二)区间估计的三要素第四节抽样的组织方式..86一、简单随机抽样(一)简单随机抽样的概念(二)简单随机抽样的方法最基本的方法是抽签法和随机数字表法(三)简单随机抽样的平均误差二、类型抽样(一)类型抽样的概念和优点(二)类型抽样的方法(等比例抽样和不等比例抽样)(三)类型抽样的平均误差重复抽样与不重复抽样的平均误差三、等距抽样.
.
一、简单随机抽样..87(一)等距抽样的概念(二)无关标志抽样与有关标志抽样(三)等距抽样的平均误差四、整群抽样也叫分群抽样或集团抽样,(一)整群抽样的概念(二)整群抽样的推断五、多阶段抽样(略).
.
(一)等距抽样的概念..88本章思考与练习题
一、思考题(简答题)
二、单项选择题
三、多项选择题
四、填空题
五、计算题
.
.
本章思考与练习题89
一、思考题
1.什么是抽样推断?它有哪些特点和作用?2.重复抽样和不重复抽样有哪些不同点?为什么重复抽样的误差总是大于不重复抽样的抽样误差?3.什么是抽样平均误差?4.影响抽样误差的因素有哪些?5.什么是抽样极限误差?什么是抽样误差的概率度?.
.
一、思考题906.什么是置信度?什么是抽样估计的准确性?他们之间有什么关系?7.抽样估计的三要素是什么?抽样估计的优良性标准是什么?8.影响样本容量的因素有哪些?.
.
6.什么是置信度?什么是抽样估计的准确性?他们之间有什么关系91二、单项选择题(在每小题的四个备选答案中选出一个正确的答案,并将正确答案的号码填在题干后的括号内)
1.用简单随机抽样方法抽取样本单位,如果要使抽样平均误差降低50%,则样本容量需要提高到原来的()。
A、4倍B、5倍C2倍D、3倍
2.抽样平均误差反映了样本指标与总体指标之间的()A、实际误差B、实际误差的绝对值C、平均误差程度D、可能误差范围.
.
二、单项选择题(在每小题的四个备选答案中选出一个正确的答案,923、在其他条件不变的情况下,提高抽样估计的可靠程度,其抽样估计的准确性将()A、保持不变B、随之扩大C、随之缩小D、无法确定A、重置抽样B、机械抽样C、不重置抽样D、分类抽样4、从总体中随机抽取样本,当抽出一个单位将其序号和标志值记下后,又将其放回到原来的总体中。此抽样方法称为().
.
3、在其他条件不变的情况下,提高抽样估计的可靠程度,其抽样估93三、多项选择题(从每小题的五个备选答案中选出二至五个正确答案,并将正确答案的号码分别填写在题干后的括号内)
1、影响抽样误差的因素有()(
)()(
)(
)A、是有限总体还是无限总体B、是变量总体还是属性总体
C、是重复抽样还是不重复抽样D、抽样单位数的多少E、总体被研究标志的变异程度.
.
三、多项选择题(从每小题的五个备选答案中选出二至五个正确答案942、在其他条件不变时,抽样极限误差的大小和置信度的关系是()(
)(
)(
)(
)A、抽样极限误差的数值愈大,则置信度愈大B、抽样极限误差的数值愈小,则置信度愈小C、抽样极限误差的数值愈小,则置信度愈大D、成正比关系E、成反比关系3、抽样法可应用在()()()()()A、对抽选的单位进行全面调查B、对电视机使用寿命的检查C、对产品的质量进行控制D、对有破坏性产品的质量检验E、对全面调查的结果进行修正.
.
2、在其他条件不变时,抽样极限误差的大小和A、抽样极限误差的954、从一个总体中可以抽出许多个样本,因此,()()()()()A、抽样指标的数值不是唯一确定的B、抽样指标是用来估计总体参数的C、总体指标是一个随机变量D、样本指标是随机变量E、样本指标称为统计量5、在抽样推断中,样本单位数的多少取决于()()()()()A、总体标准差的大小B、允许误差的大小C、抽样估计的把握程度D、总体参数的大小E、抽样方法和组织形式.
.
4、从一个总体中可以抽出许多个样本,因此,A、抽样指标的数值96四、填空题
1.根据取样的方式不同,抽样方法______和_____两种。2.扩大或缩小抽样误差的倍数称________。3.抽样误差是由于抽样的________而产生的误差,这种误差不可避免,但可以______。4.用样本指标估计总体指标时,判断估计的优良标准是_________、_________和_________。.
.
四、填空题975.总体参数的区间估计必须同时具备_____、_______和_______三个要素。6.在统计调查的的误差中,按照误差的来源不同,一般可分为_______误差和_______误差两种。7.常用的抽样组织形式有_______、________、________和_________。.
.
5.总体参数的区间估计必须同时具备_____、_______98五、计算题
1.高校有5000学生,随机抽取250人调查每周收看电视的时间,资料如下:每周看电视时间(小时)2以下2-44-66-88-10合计学生人数(人)2256926020250
试按不重复抽样方法,以95.45%的把握程度估计该校全部学生每周平均看电视的时间。2.某地区随机重复抽选100户农民,经调查有36户拥有彩色电视机,又知道抽样户是总户数的千分之一。当把握程度为95.45%时,试估计该地区农民拥有彩色电视机的户数的范围。.
.
五、计算题993.对一批成品按不重复抽样方法抽选200件,其中废品8件,又知道抽样单位数是成品量的1/20。当概率为0.9545时,可否认为这一批产品的废品率不超过5%?4.某单位按重复抽样方法抽取40名职工,对其业务考试成绩进行检查,资料如下:
68898884868775737268758299588154797695767160916576727685899264578381787772617087.
.
3.对一批成品按不重复抽样方法抽选200件,其中废品8件,又100要求:(1)将上述资料按成绩分成以下几组:60分以下、60~70分;70~80分、80~90分、90~100分。并根据分组整理成变量分配数列;(2)根据分组整理后的变量分配数列,以95.45%的概率推断全体职工业务考试成绩的区间范围;(3)若其他条件不变,将允许误差缩小一半,应抽取多少名职工?.
.
要求:..1015.某市进行职工家计调查,据以往资料知该市职工家庭平均每人年收入的标准差为300元,而家庭消费的恩格尔系数(即食品支出占消费总支出的比重为52%。要求在置信度为99.73%的条件下,且人均年收入的极限误差不超过30元,恩格尔系数的极限误差不超过5%,试计算必要的样本单位数。.
.
5.某市进行职工家计调查,据以往资料知该市职工家庭平均每人年102.
.
本章学习目的
通过本章的学习要求掌握抽样推断的基本概念和一般原理,抽样误差的形成,计算抽样误差及如何估计总体的平均指标和成数指标。..本章学习目的103.
.
本章重点、难点
重点:有关抽样推断的基本概念,抽样误差概念的理解、抽样平均误差的计算及影响因素,总体平均数和总体成数的区间估计的方法、必要样本容量的确定。
难点:抽样平均误差的计算、区间估计的方法及样本容量的确定。抽样极限误差、概率度、置信度等指标之间的关系。..本章重点、难点104.
.
本章参考资料
1.社会经济统计学原理教科书》编写组编写,第八章,中国统计出版社出版。⒉庞皓主编《统计学》第五章,西南财经大学出版社出版(“211”工程规划教材)。⒊杨曾武主编《社会经济统计学原理》第七章,天津科学技术出版社出版。⒋郭立田、赵长城主编《基础统计学教程》第五章,新华出版社出版。⒌
范巧研、鲁勇兵主编《统计学原理》第七章,天津科技出版社出版。..本章参考资料105演讲完毕,谢谢观看!演讲完毕,谢谢观看!106统计学
(多媒体教学课件)第六章抽样推断
.
.
统计学(多媒体教学课件)第六107
本章相关内容
.
.
本章教学内容
本章小结
本章思考与练习题
本章学习目的
本章重点、难点
本章参考资料
本章相关内容108
本章教学内容(6学时)
.
.
第一节抽样法的基本原理
第二节抽样误差
第三节抽样估计的方法
第四节抽样的组织形式
本章教学内容(6学时)..109.
.
第一节抽样法的基本原理
一、抽样法的概念和特点
二、有关抽样推断的几个基本概念
三、抽样法的内容..第一节抽样法的基本原理110.
.
一、抽样法的概念和特点
(一)抽样法的概念
(二)抽样法的特点
(三)抽样法的作用
..一、抽样法的概念和特点111.
.
综合指标总量指标相对指标平均指标变异指标反映总体数量特征
但在实际工作中,许多场合下我们不可能采用全面调查方法,来计算反映总体数量特征的指标。而只能采用抽样调查(即抽样推断)的方法。
例如,对某厂生产的10000只灯泡进行平均耐用时数的检验,就只能采用抽样推断的方法。又如,我国2005年粮食总产量45711万吨,城镇居民人均可支配收入7703元等这些指标数值均属抽样推断的结果。..综合指标总量指标相对指标平均指标变异指标反映总112.
.
(一)抽样法的概念(第81页)
抽样法即抽样推断就是按照随机抽样的原则,从总体中抽出一部分单位作为样本,并利用样本的实际资料计算样本指标值,然后根据样本指标对总体的数量特征(总体指标)做出具有一定可靠程度的估计和判断的一种统计分析方法。(二)抽样推断的特点
(1)属于非全面调查,按照随机原则选取调查单位;(2)抽样调查的目的在于根据部分单位的实际资料对总体的数量特征作出估计(3)抽样误差可以事先计算并且加以控制;(4)它是运用概率估计的方法。..(一)抽样法的概念(第81页)113(三)抽样调查的作用
(1)对于不可能或不必要进行全面调查的场合,抽样调查具有其独特的作用。(2)抽样调查和全面调查相结合,可以验证和补充修正全面调查的资料、数据。(3)利用抽样方法进行生产过程的质量控制。(4)抽样方法可以用来检验总体特征的某些假设,判断假设的真伪,为行动决策提供依据。.
.
(三)抽样调查的作用114.
.
抽样推断过程图例
:样本n=100随机原则总体N=10000推断(抽样误差)
(总体指标)(样本指标)K个样本
(抽样实际误差)
抽样平均误差
(可以计算)抽样推断的结果具有一定的可靠程度(置信度)..抽样推断过程图例:样本n=100随机原则总115.
.
二、有关抽样法的几个基本概念
(一)总体和样本
(二)总体参数和统计量
(三)样本容量和样本个数
(四)抽样框和抽样单元(五)重复抽样与不重复抽样..二、有关抽样法的几个基本概念(一)总体和116.
.
(一)总体和样本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物联网平台与设备采购合同
- 2024年度医疗器械采购合同:高精度医疗设备购买
- 2024年度保温砂浆生产线设备采购及安装合同
- 2024年度校园数字化建设设计与施工合同
- 2024年度专利许可使用合同关键技术参数与权益分配
- 2024年度仓储服务合同的服务条款和责任规定
- 04版公共车位销售与管理合同
- 2024年度企业员工福利IC卡发放与管理合同
- 2024年度版权许可合同:电影版权转授许可协议
- 2024年度大连二手房地产估价服务合同
- 药品经营管理职业生涯规划书
- 语文:专题6 图文转换 练习
- 《小学教育概统》课件
- 工商企业等社会资本流转农村土地经营权申请表、农村土地经营权流转意向协议书示范文本模板
- 加热炉检修规程范本
- 固定资产清查合同
- 初中道德与法治培训心得体会
- 河道水体生态修复治理施工方案完整
- GH/T 1420-2023野生食用菌保育促繁技术规程松茸
- 职高学校班级家长会课件
- 第2课+新航路开辟后的食物物种交流+导学案 高二历史统编版(2019)选择性必修2经济与社会生活
评论
0/150
提交评论