2023届山西省九年级数学第一学期期末统考模拟试题含解析_第1页
2023届山西省九年级数学第一学期期末统考模拟试题含解析_第2页
2023届山西省九年级数学第一学期期末统考模拟试题含解析_第3页
2023届山西省九年级数学第一学期期末统考模拟试题含解析_第4页
2023届山西省九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠ACB=90°,⊙O是△ABC的内切圆,三个切点分别为D、E、F,若BF=2,AF=3,则△ABC的面积是()A.6 B.7 C. D.122.在Rt△ABC中,∠C=90°,AC=4,BC=3,则是A. B. C. D.3.已知,且α是锐角,则α的度数是()A.30° B.45° C.60° D.不确定4.平面直角坐标系内一点关于原点对称点的坐标是()A. B. C. D.5.某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数400150035007000900014000成活数369133532036335807312628成活的频率09230.89009150.9050.8970.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率6.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣37.在双曲线的每一分支上,y都随x的增大而增大,则k的值可以是()A.2 B.3 C.0 D.18.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A. B.3 C. D.29.如图是由6个大小相同的小正方体叠成的几何体,则它的主视图是()A. B.C. D.10.二次函数的图象如右图所示,若,,则()A., B., C., D.,二、填空题(每小题3分,共24分)11.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______.12.某公司生产一种饮料是由A,B两种原料液按一定比例配成,其中A原料液的原成本价为10元/千克,B原料液的原成本价为5元/千克,按原售价销售可以获得50%的利润率,由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高_____元/千克.13.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为_____米.14.抛物线的顶点坐标是______.15.如图,在中,点D、E分别在AB、AC边上,,,,则__________.16.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____.17.已知y=x2+(1﹣a)x+2是关于x的二次函数,当x的取值范围是0≤x≤4时,y仅在x=4时取得最大值,则实数a的取值范围是_____.18.已知关于的方程有两个不相等的实数根,则的取值范围是__________.三、解答题(共66分)19.(10分)如图,在△ABC中,AB=10,AC=8,D、E分别是AB、AC上的点,且AD=4,∠BDE+∠C=180°.求AE的长.20.(6分)如图,已知是的外接圆,圆心在的外部,,,求的半径.21.(6分)如图,△ABC内接于⊙O,AB是⊙O的直径,过点A作AD平分∠BAC,交⊙O于点D,过点D作DE∥BC交AC的延长线于点E.(1)依据题意,补全图形(尺规作图,保留痕迹);(2)判断并证明:直线DE与⊙O的位置关系;(3)若AB=10,BC=8,求CE的长.22.(8分)已知:中,.(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,求的面积.23.(8分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.24.(8分)解方程:x2﹣2x﹣5=1.25.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A(0,﹣4)和B(2,0)两点.(1)求c的值及a,b满足的关系式;(2)若抛物线在A和B两点间,从左到右上升,求a的取值范围;(3)抛物线同时经过两个不同的点M(p,m),N(﹣2﹣p,n).①若m=n,求a的值;②若m=﹣2p﹣3,n=2p+1,求a的值.26.(10分)我国于2019年6月5日首次完成运载火箭海.上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为千米,仰角为.火箭继续直线上升到达点处,此时海岸边处的雷达测得点的仰角增加,求此时火箭所在点处与处的距离.(保留根号)

参考答案一、选择题(每小题3分,共30分)1、A【解析】利用切线的性质以及正方形的判定方法得出四边形OECD是正方形,进而利用勾股定理得出答案.【详解】连接DO,EO,∵⊙O是△ABC的内切圆,切点分别为D,E,F,∴OE⊥AC,OD⊥BC,CD=CE,BD=BF=3,AF=AE=4又∵∠C=90°,∴四边形OECD是矩形,又∵EO=DO,∴矩形OECD是正方形,设EO=x,则EC=CD=x,在Rt△ABC中BC2+AC2=AB2故(x+2)2+(x+3)2=52,解得:x=1,∴BC=3,AC=4,∴S△ABC=×3×4=6,故选A.【点睛】此题主要考查了三角形内切圆与内心,得出四边形OECF是正方形是解题关键.2、A【分析】根据题意画出图形,由勾股定理求出AB的长,再根据三角函数的定义解答即可.【详解】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB==5,∴sinA=,故选A.【点睛】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3、C【分析】根据sin60°=解答即可.【详解】解:∵α为锐角,sinα=,sin60°=,∴α=60°.故选:C.【点睛】本题考查的是特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.4、D【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3),故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.5、B【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案.【详解】解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A选项正确;如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B选项错误;可以用试验次数累计最多时的频率作为概率的估计值,故C选项正确;在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D选项正确.故选:B.【点睛】本题主要考查的是利用频率估计概率,大量反复试验下频率稳定值即概率,掌握这个知识点是解题的关键.6、D【详解】因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.7、C【分析】根据反比例函数的性质:当k-1<0时,在每一个象限内,函数值y随着自变量x的增大而增大作答.【详解】∵在双曲线的每一条分支上,y都随x的增大而增大,∴k-1<0,∴k<1,故选:C.【点睛】本题考查了反比例函数的性质.对于反比例函数,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.8、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB===,故选D.考点:1.锐角三角函数的定义;2.勾股定理.9、C【分析】找到从正面看所得到的图形即可.【详解】解:它的主视图是:故选:C.【点睛】本题考查了三视图的知识,掌握主视图是解题的关键.10、A【分析】由于当x=2.5时,,再根据对称轴得出b=-2a,即可得出5a+4c>0,因此可以判断M的符号;由于当x=1时,y=a+b+c>0,因此可以判断N的符号;【详解】解:∵当x=2.5时,y=,∴25a+10b+4c>0,,∴b=-2a,

∴25a-20a+4c>0,即5a+4c>0,

∴M>0,

∵当x=1时,y=a+b+c>0,

∴N>0,

故选:A.【点睛】此题主要考查了二次函数图象与系数的关系,解题的关键是注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、【分析】根据速度=路程÷时间,即可得出y与x的函数关系式.【详解】解:∵速度=路程÷时间,∴故答案为:【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.12、1【分析】设配制比例为1:x,则A原液上涨后的成本是10(1+20%)元,B原液上涨后的成本是5(1+40%)x元,配制后的总成本是(10+5x)(1+),根据题意可得方程10(1+20%)+5(1+40%)x=(10+5x)(1+),解可得配制比例,然后计算出原来每千克的成本和售价,然后表示出此时每千克成本和售价,即可算出此时售价与原售价之差.【详解】解:设配制比例为1:x,由题意得:10(1+20%)+5(1+40%)x=(10+5x)(1+),解得x=4,则原来每千克成本为:=1(元),原来每千克售价为:1×(1+50%)=9(元),此时每千克成本为:1×(1+)(1+25%)=10(元),此时每千克售价为:10×(1+50%)=15(元),则此时售价与原售价之差为:15﹣9=1(元).故答案为:1.【点睛】本题考查了一元一次方程的应用,仔细阅读题目,找到关系式是解题的关键.13、11.1【解析】根据题意证出△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案.【详解】由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则,即,解得:AC=10,故AB=AC+BC=10+1.1=11.1(米),即旗杆的高度为11.1米.故答案为11.1.【点睛】本题考查了相似三角形的应用;由三角形相似得出对应边成比例是解题的关键.14、(1,3)【分析】根据顶点式:的顶点坐标为(h,k)即可求出顶点坐标.【详解】解:由顶点式可知:的顶点坐标为:(1,3).故答案为(1,3).【点睛】此题考查的是求顶点坐标,掌握顶点式:的顶点坐标为(h,k)是解决此题的关键.15、【分析】由,,即可求得的长,又由,根据平行线分线段成比例定理,可得,则可求得答案.【详解】解:,,,,,.故答案为:.【点睛】此题考查了相似三角形的判定和性质,此题比较简单,注意掌握比例线段的对应关系是解此题的关键.16、y=x1+1【解析】分析:先确定二次函数y=x1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x1+1.故答案为y=x1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.17、a<1【分析】先求出抛物线的对称轴,再根据二次函数的增减性列出不等式,求解即可.【详解】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴﹣<,解得a<1.故答案为:a<1.【点睛】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.18、且【分析】根据根的判别式和一元一次方程的定义得到关于的不等式,求出的取值即可.【详解】关于的一元二次方程有两个不相等的实数根,∵,∴且,

解得:且,

故答案为:且.【点睛】本题考查了根的判别式和一元二次方程的定义,能根据题意得出关于的不等式是解此题的关键.三、解答题(共66分)19、AE=5【分析】根据∠BDE+∠C=180°可得出C=ADE,继而可证明△ADE∽△ACB,再利用相似三角形的性质求解即可.【详解】解:∵BDE+C=180°BDE+ADE=180°∴C=ADE∵A=A∴∴∴∴AE=5【点睛】本题考查的知识点是相似三角形的判定及性质,利用已知条件得出C=ADE,是解此题的关键.20、4【解析】已知△ABC是等腰三角形,根据等腰三角形的性质,作于点,则直线为的中垂线,直线过点,在Rt△OBH中,用半径表示出OH的长,即可用勾股定理求得半径的长.【详解】作于点,则直线为的中垂线,直线过点,,,,即,.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.21、(1)见解析;(3)直线DE是⊙O的切线,证明见解析;(3)3.3或4.3【分析】(1)依据题意,利用尺规作图技巧补全图形即可;(3)由题意连结OD,交BC于F,判断并证明OD⊥DE于D以此证明直线DE与⊙O的位置关系;(3)由题意根据相关条件证明平行四边形CFDE是矩形,从而进行分析求解.【详解】(1)如图.(3)判断:直线DE是⊙O的切线.证明:连结OD,交BC于F.∵AD平分∠BAC,∴∠BAD=∠CAD.∴.∴OD⊥BC于F.∵DE∥BC,∴OD⊥DE于D.∴直线DE是⊙O的切线.(3)∵AB是⊙O的直径,∴∠ACB=90°.∵AB=10,BC=8,∴AC=1.∵∠BOF=∠ACB=90°,∴OD∥AC.∵O是AB中点,∴OF==3.∵OD==5,∴DF=3.∵DE∥BC,OD∥AC,∴四边形CFDE是平行四边形.∵∠ODE=90°,∴平行四边形CFDE是矩形.∴CE=DF=3.【点睛】本题结合圆考查圆的尺规作图以及圆的切线定义和矩形的证明,分别掌握其方法定义进行分析.22、(1)详见解析;(2)【分析】(1)分别作出AB、BC的垂直平分线,两条垂直平分线的交点即是圆的圆心,以O为圆心,OB为半径作圆即可,如图所示.(2)已知的外接圆的圆心到边的距离为4,,利用勾股定理即可求出OB2,再根据圆的面积公式即可求解.【详解】解:(1)如图(2)设BC的垂直平分线交BC于点D由题意得:,在Rt中,∴【点睛】本题主要考查的是圆的外接三角形尺规作图法和勾股定理的应用,掌握这两个知识点是解题的关键.23、(1)PD是⊙O的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD和∠D的度数,进而可得∠OPD=90°,从而证明PD是⊙O的切线;(2)连结BC,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC长,再证明△CAE∽△CPA,进而可得,然后可得CE•CP的值.试题解析:(1)如图,PD是⊙O的切线.证明如下:连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.24、x1=1+,x2=1﹣.【解析】利用完全平方公式配平方,再利用直接开方法求方程的解即可.【详解】解:x2﹣2x+1=6,那么(x﹣1)2=6,即x﹣1=±,则x1=1+,x2=1﹣.【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.25、(1)c=﹣4,2a+b=2;(2)﹣1≤a<0或0<a≤1;(3)①a=;②a=1【分析】(1)直接将AB两点代入解析式可求c,以及a,b之间的关系式.

(2)根据抛物线的性质可知,当a>0时,抛物线对称轴右边的y随x增大而增大,结合抛物线对称轴x=和A、B两点位置列出不等式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论