




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图,是的角平分线,将沿所在直线翻折,点落在边上的点处.若,则∠B的大小为()A.80° B.60° C.40° D.30°2.若实数x,y,z满足,则下列式子一定成立的是()A.x+y+z=0 B.x+y-2z=0 C.y+z-2x=0 D.z+x-2y=03.如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A. B. C. D.4.四根小棒的长分别是5,9,12,13,从中选择三根小棒首尾相接,搭成边长如下的四个三角形,其中是直角三角形的是()A.5,9,12 B.5,9,13 C.5,12,13 D.9,12,135.把分解因式正确的是()A. B. C. D.6.下列各数是无理数的是()A.227 B.38 C.0.4144144147.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CE B.AD=AE C.DA=DE D.BE=CD8.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则图中∠的度数是()A.75° B.65° C.55° D.45°9.如图,在中,分别是的中点,点在延长线上,添加一个条件使四边形为平行四边形,则这个条件是()A. B. C. D.10.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°二、填空题(每小题3分,共24分)11.若是完全平方公式,则__________.12.有5个从小到大排列的正整数,中位数是3,唯一的众数是8,则这5个数的平均数为__________.13.如图,,的垂直平分线交于点,交于点,若,则______°.14.如图,点为线段上一点,在同侧分别作正三角形和,分别与、交于点、,与交于点,以下结论:①≌;②;③;④.以上结论正确的有_________(把你认为正确的序号都填上).15.如图,中,,,,为边的垂直平分线DE上一个动点,则的周长最小值为________.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=15,BD:CD=3:2,则点D到AB的距离是________.17.如图,AB⊥y轴,垂足为B,∠BAO=30°,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=-x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=-x上,依次进行下去…若点B的坐标是(0,1),则点O2020的纵坐标为__________;18.观察图形,根据图形面积的关系,不需要连其他的线,便可以得到一个用来分解因式的公式,这个公式是________________三、解答题(共66分)19.(10分)已知:如图,E是AC上一点,AB=CE,AB∥CD,∠ACB=∠D.求证:BC=ED.20.(6分)如图,由5个全等的正方形组成的图案,请按下列要求画图:(1)在图案(1)中添加1个正方形,使它成轴对称图形但不是中心对称图形.(2)在图案(2)中添加1个正方形,使它成中心对称图形但不是轴对称图形.(3)在图案(3)中添加1个正方形,使它既成轴对称图形,又成中心对称图形.21.(6分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?22.(8分)如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,BE=CF.(1)求证:AD平分∠BAC.(2)写出AB+AC与AE之间的等量关系,并说明理由.23.(8分)我校图书馆大楼工程在招标时,接到甲乙两个工程队的投标书,每施工一个月,需付甲工程队工程款16万元,付乙工程队12万元。工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成此项工程刚好如期完工;(2)乙队单独完成此项工程要比规定工期多用3个月;(3)若甲乙两队合作2个月,剩下的工程由乙队独做也正好如期完工。你觉得哪一种施工方案最节省工程款,说明理由。24.(8分)如图,在中,是边上的一点,平分,交边于点,连结.(1)求证:;(2)若,求的度数.25.(10分)如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上(但不与A点重合),求t的值.26.(10分)某校为了培养学生学习数学的兴趣,举办“我爱数学”比赛,现有甲、乙、丙三个小组进入决赛.评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:比赛项目比赛成绩/分甲乙丙研究报告908379小组展示857982答辩748491(1)如果根据三个方面的平均成绩确定名次,那么哪个小组获得此次比赛的冠军?(2)如果将研究报告、小组展示、答辩三项得分按4:3:3的比例确定各小组的成绩,此时哪个小组获得此次比赛的冠军?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据翻折的性质可得AE=AB,DE=BD,∠AED=∠B,根据AB+BD=AC可得DE=CE,根据等腰三角形的性质及外角性质可得∠AED的度数,即可得答案.【详解】∵将沿所在直线翻折,点落在边上的点处.∴AE=AB,DE=BD,∠AED=∠B,∵AB+BD=AC,AC=AE+CE,∴DE=CE,∴∠C=∠CDE,∵∠C=20°,∠ADE=∠C+∠CDE,∴∠ADE=2∠C=40°,∴∠B=40°,故选:C.【点睛】本题考查翻折的性质、等腰三角形的性质及三角形外角的性质,翻折前后两个图形全等,对应边相等,对应角相等;三角形的一个外角等于和它不相邻的两个内角的和;等腰三角形的两个底角相等;熟练掌握相关性质是解题关键.2、D【解析】∵(x﹣z)2﹣4(x﹣y)(y﹣z)=1,∴x2+z2﹣2xz﹣4xy+4xz+4y2﹣4yz=1,∴x2+z2+2xz﹣4xy+4y2﹣4yz=1,∴(x+z)2﹣4y(x+z)+4y2=1,∴(x+z﹣2y)2=1,∴z+x﹣2y=1.故选D.3、A【分析】先由,得出动点在与平行且与的距离是的直线上,作关于直线的对称点,连接,则的长就是所求的最短距离.然后在直角三角形中,由勾股定理求得的值,即可得到的最小值.【详解】设中边上的高是.,,,动点在与平行且与的距离是的直线上,如图,作关于直线的对称点,连接,则的长就是所求的最短距离,在中,,,即的最小值为.故选:A.【点睛】本题考查了轴对称﹣最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.4、C【分析】当一个三角形中,两个较小边的平方和等于较大边的平方,则这个三角形是直角三角形.据此进行求解即可.【详解】A、52+92=106≠122=144,故不能构成直角三角形;B、52+92=106≠132=169,故不能构成直角三角形;C、52+122=169=132,故能构成直角三角形;D、92+122=225≠132=169,故不能构成直角三角形,故选C.5、D【分析】先提取公因式mn,再对余下的多项式利用完全平方公式继续分解.【详解】==.故选:D.【点睛】本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于要进行二次分解因式.6、D【解析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.由此即可判定选择项.【详解】解:A、227是有理数,故选项错误;
B、38=2是有理数,故选项错误;
C、C.0.414414414是有理数,故选项错误;
D、32=42【点睛】此题主要考查了无理数的定义.注意带根号的数与无理数的区别:带根号的数不一定是无理数,带根号且开方开不尽的数一定是无理数.7、C【分析】根据全等三角形的判定与性质,等边对等角的性质对各选项分析判断后利用排除法求解.【详解】解:A、添加BD=CE,可以利用“边角边”证明△ABD和△ACE全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误;B、添加AD=AE,根据等边对等角可得∠ADE=∠AED,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠DAB=∠EAC,故本选项错误;C、添加DA=DE无法求出∠DAB=∠EAC,故本选项正确;D、添加BE=CD可以利用“边角边”证明△ABE和△ACD全等,再根据全等三角形对应角相等得到∠DAB=∠EAC,故本选项错误.故选C.8、A【分析】根据三角形的内角和定理、对顶角相等和三角形外角的性质即可得出结论.【详解】解:如下图所示∠1=180°-90°-45°=45°∴∠2=∠1=45°∴∠=∠2+30°=75°故选A.【点睛】此题考查的是三角形的内角和定理、三角形外角的性质和对顶角的性质,掌握三角形的内角和定理、三角形外角的性质和对顶角相等是解决此题的关键.9、B【分析】利用三角形中位线定理得到,结合平行四边形的判定定理进行选择.【详解】∵在中,分别是的中点,∴是的中位线,∴.A、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.B、根据可以判定,即,由“两组对边分别平行的四边形是平行四边形”得到四边形为平行四边形,故本选项正确.C、根据不能判定,即不能判定四边形为平行四边形,故本选项错误.D、根据不能判定四边形为平行四边形,故本选项错误.故选B.【点睛】本题三角形的中位线的性质和平行四边形的判定.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.10、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【详解】解:设∠B=x
∵AC=DC=DB
∴∠CAD=∠CDA=2x
∴∠ACB=180°-2x-x=105°
解得x=25°.
故选:C.【点睛】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.二、填空题(每小题3分,共24分)11、【分析】根据乘积二倍项和已知平方项确定出这两个数为和,再利用完全平方式求解即可.【详解】解:,.故答案为:16.【点睛】本题主要了完全平方式,根据乘积二倍项确定出这两个数是求解的关键.12、【分析】根据题意以及众数和中位数的定义可得出这5个数字,然后求其平均数即可.【详解】解:由题意得:这五个数字为:1,2,3,8,8,
则这5个数的平均数为:(1+2+3+8+8)÷5=.
故答案为:.【点睛】本题考查了众数和中位数的知识,难度一般,解答本题的关键是根据题意分析出这五个数字.13、1【分析】根据等边对等角和三角形的内角和定理即可求出∠ABC,然后根据垂直平分线的性质可得DA=DB,从而得出∠A=∠DBA=40°,即可求出.【详解】解:∵,∴∠ABC=∠ACB=∵DE垂直平分AB∴DA=DB∴∠A=∠DBA=40°∴∠DBC=∠ABC-∠DBA=1°故答案为:1.【点睛】此题考查的是等腰三角形的性质和垂直平分线的性质,掌握等边对等角和线段垂直平分线上的点到这条线段两个端点的距离相等是解决此题的关键.14、①②④【分析】根据等边三角形的性质可得CA=CB,CD=CE,∠ACB=∠DCE=60°,然后根据等式的基本性质可得∠ACD=∠BCE,利用SAS即可证出≌,即可判断①;根据全等三角形的性质,即可判断②;利用三角形的内角和定理和等量代换即可求出∠AOB,即可判断③,最后利用ASA证出≌,即可判断④.【详解】解:∵△ABC和△CDE都是等边三角形∴CA=CB,CD=CE,∠ACB=∠DCE=60°∴∠ACB+∠BCD=∠DCE+∠BCD∴∠ACD=∠BCE在和中∴≌,故①正确;∴∠CAD=∠CBE,,故②正确;∵∠OPB=∠CPA∴∠AOB=180°-∠OPB-∠CBE=180°-∠CPA-∠CAD=∠ACB=60°,故③错误;∵∠BCQ=180°-∠ACB-∠DCE=60°∴∠ACP=∠BCQ在和中∴≌,∴,故④正确.故答案为:①②④.【点睛】此题考查的是全等三角形的判定及性质和等边三角形的性质,掌握全等三角形的判定及性质和等边三角形的性质是解决此题的关键.15、1【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点P和点E重合时,△ACP的周长最小,再结合题目中的已知条件求出AB的长即可.【详解】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点P和点E重合时,△ACP的周长最小,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=1cm,故答案为:1.【点睛】本题考查了轴对称−最短路线问题、垂直平分线的性质以及直角三角形的性质,正确确定P点的位置是解题的关键.16、6【分析】过点D作DE⊥AB于E,根据比例求出CD,再根据角平分线上的点到角的两边的距离相等可得DE=CD.【详解】过点D作DE⊥AB于E,∵BC=15,BD:CD=3:2,∴∵,AD平分∠BAC,∴DE=CD=6.故答案为6.【点睛】考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.17、【分析】观察图象可知,O2、O4、O6、...O2020在直线y=-x上,OO2=的周长=(1++2),OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),再根据点O2020的纵坐标是OO2020的一半,由此即可解决问题.【详解】解:观察图象可知,O2、O4、O6、...O2020在直线y=-x上,∵∠BAO=30°,AB⊥y轴,点B的坐标是(0,1),∴OO2=的周长=(1++2),∴OO4=2(1++2),OO6=3(1++2),依次类推OO2020=1010(1++2),∵直线y=-x与x轴负半轴的交角为30°∴点O2020的纵坐标=OO2020=故答案为:【点睛】本题考查坐标与图形的变化、规律型:点的坐标、一次函数的性质等知识,解题的关键是学会从特殊到一般的探究方法,属于中考常考题型.18、【解析】由图形可得:三、解答题(共66分)19、证明见解析.【分析】根据两直线平行,内错角相等可得∠A=∠ECD,然后利用“角角边”证明△ABC和△ECD全等,再根据全等三角形对应边相等即可得证.【详解】∵AB∥CD,∴∠A=∠ECD.在△ABC和△ECD中,∵∠A=∠ECD,∠ACB=∠D,AB=CE,∴△ABC≌△ECD(AAS).∴BC=DE.考点:1.平行线的性质;2.全等三角形的判定和性质.20、(1)作图见解析;(2)作图见解析;(3)作图见解析【分析】(1)根据轴对称、中心对称的性质作图,即可完成求解;(2)根据轴对称、中心对称的性质作图,即可完成求解;(3)根据轴对称、中心对称的性质作图,即可完成求解.【详解】(1)如图所示(2)如图所示(3)如图所示.【点睛】本题考查了轴对称、中心对称的知识;解题的关键是熟练掌握轴对称、中心对称的性质,从而完成求解.21、(1)黄瓜和茄子各30千克、10千克;(2)23元【分析】(1)设当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.【详解】(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,解得,答:采摘的黄瓜和茄子各30千克、10千克;(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.【点睛】本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.22、(1)详见解析;(2)AB+AC=2AE,理由详见解析.【分析】(1)根据相“HL”定理得出△BDE≌△CDF,故可得出DE=DF,所以AD平分∠BAC;(2)由(1)中△BDE≌△CDE可知BE=CF,AD平分∠BAC,故可得出△AED≌△AFD,所以AE=AF,故AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【详解】证明:(1)∵DE⊥AB于E,DF⊥AC于F,∴∠E=∠DFC=90°,∴△BDE与△CDE均为直角三角形,∵在Rt△BDE与Rt△CDF中,∴Rt△BDE≌Rt△CDF,∴DE=DF,∴AD平分∠BAC;(2)AB+AC=2AE.理由:∵BE=CF,AD平分∠BAC,∴∠EAD=∠CAD,∵∠E=∠AFD=90°,∴∠ADE=∠ADF,在△AED与△AFD中,∴△AED≌△AFD,∴AE=AF,∴AB+AC=AE﹣BE+AF+CF=AE+AE=2AE.【点睛】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.23、方案(1)最节省工程款.理由见解析【分析】设这项工程的工期是x个月,甲队单独完成这项工程刚好如期完成,则甲队每月完成这项工程的,乙队单独完成此项工程要比规定工期多用3个月,则乙队每月完成这些工程的,根据甲乙两队合作2个月,剩下的工程由乙队独做也正好如期完工列出分式方程求解,再分别求出三种施工方案的费用,比较即可.【详解】解:方案(1)最节省工程款.理由如下:设规定工期是x个月,则有:,去分母得:2(x+3)+x2=x(x+3),解得:x=6,经检验x=6是原分式方程的解,则x+3=1.所以单独完成任务甲需要6个月,乙需要1个月.各方案所需工程款为:方案(1):6×16=16(万元),方案(2):1×12=108(万元),方案(3):2×16+6×12=104(万元).∵16<104<108,∴方案(1)最节省工程款.【点睛】本题考查了分式方程的应用,设出未知数,根据甲乙两队合作2个月,剩下的工程由乙队独做也正好如期完工列出分式方程是解决此题的关键.24、(1)见解析;(2)65°【分析】(1)先由角平分线的定义得到∠ABE=∠DBE,然后根据“AAS”即可证明△ABE≌△DBE;(2)由三角形外角的性质可求出∠AED的度数,然后根据∠AED=∠BED求解即可.【详解】解:(1)∵BE平分,∴∠ABE=∠DBE,在△ABE和△DBE中∵∠ABE=∠DBE,BE=BE,∠A=∠BDE,∴△ABE≌△DBE;(2)∵△ABE≌△DBE,∴∠AED=∠BED,∵,,∴∠AED=80°+50°=130°,∴∠AED=130°
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江机电职业技术学院《全媒体编辑实务》2023-2024学年第二学期期末试卷
- 中国石油大学(北京)《聚合物材料的表面与界面》2023-2024学年第二学期期末试卷
- 上海市2025届数学高二第二学期期末综合测试模拟试题含解析
- 武汉文理学院《边坡工程》2023-2024学年第二学期期末试卷
- 四川建筑职业技术学院《粉体工程》2023-2024学年第二学期期末试卷
- 云南省玉溪民族中学2025年高二下数学期末考试试题含解析
- 温州科技职业学院《误差理论与测量平差基础》2023-2024学年第二学期期末试卷
- 四川省富顺二中高2025届数学高二下期末调研模拟试题含解析
- 中国青年政治学院《计算机英语》2023-2024学年第二学期期末试卷
- 苏州经贸职业技术学院《无线通信》2023-2024学年第二学期期末试卷
- 2025届四川省成都市高三毕业班第三次诊断性考试英语试卷读后续写-笛子失而复得的故事+讲义
- 安川机器人手动操纵及编程基础
- 智慧矿山无人机自动巡检解决方案
- 2025年浙江省杭州市西湖区中考数学一模试卷
- 2025年中国ARM云手机行业市场运行格局及投资前景预测分析报告
- 混凝土配合比试验设计方案
- 蓝色简约风美国加征关税
- 规范种植品种管理制度
- 消化内镜操作技术
- 国家开放大学2025年春季《形势与政策》大作业(二)
- 重症监护室感染管理制度
评论
0/150
提交评论