2023届黑龙江省数学八年级上册期末检测模拟试题含解析_第1页
2023届黑龙江省数学八年级上册期末检测模拟试题含解析_第2页
2023届黑龙江省数学八年级上册期末检测模拟试题含解析_第3页
2023届黑龙江省数学八年级上册期末检测模拟试题含解析_第4页
2023届黑龙江省数学八年级上册期末检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形2.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设()A.a不平行b B.b不平行c C.a⊥c D.a不平行c3.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°4.如果y=x-2a+1是正比例函数,则a的值是()A. B.0 C. D.-25.以下列各组线段为边作三角形,不能构成直角三角形的是()A.3,5,6 B.3,4,5 C.5,12,13 D.9,40,416.下列计算结果正确的是()A.﹣2x2y3+xy=﹣2x3y4 B.3x2y﹣5xy2=﹣2x2yC.(3a﹣2)(3a﹣2)=9a2﹣4 D.28x4y2÷7x3y=4xy7.关于的一元二次方程的根的情况为()A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定8.下列各式是最简二次根式的是()A. B. C. D.9.如图,已知,则一定是的()A.角平分线 B.高线 C.中线 D.无法确定10.王珊珊同学在学校阅览室借了一本书,共页,管理员要求在两周内归还,当她读了这本书的一半时,发现每天要多读页才能在借期内读完,问前一半她每天读多少页?如果设前一半每天读页,则下列方程正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.若是一个完全平方式,则m的值是__________.12.若等腰三角形的一边,一边等于,则它的周长等于_____________.13.如图,是内一定点,点,分别在边,上运动,若,,则的周长的最小值为___________.14.“关心他人,奉献爱心”.我市某中学举行慈善一日捐活动,活动中七年级一班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了条形统计图.根据图中提供的信息,全班同学捐款的总金额是___元.15.多项式加上一个单项式后能称为一个完全平方式,请你写出一个符合条件的单项式__________.16.分解因式:__________.17.如图,在第一个△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C,得到第二个△A1A2C;在A2C上取一点D,延长A1A2=A2D;…,按此做法进行下去,则第5个三角形中,以点A4为顶点的等腰三角形的底角的度数为_____.18.如图,在中,,,的垂直平分线分别交,于点,,则______.三、解答题(共66分)19.(10分)综合与实践:问题情境:如图1,AB∥CD,∠PAB=25°,∠PCD=37°,求∠APC的度数,小明的思路是:过点P作PE∥AB,通过平行线性质来求∠APC问题解决:(1)按小明的思路,易求得∠APC的度数为°;问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β.(2)当点P在B,D两点之间运动时,问∠APC与α,β之间有何数量关系?请说明理由;拓展延伸:(3)在(2)的条件下,如果点P在B,D两点外侧运动时(点P与点O,B,D三点不重合)请你直接写出当点P在线段OB上时,∠APC与α,β之间的数量关系,点P在射线DM上时,∠APC与α,β之间的数量关系.20.(6分)如图,点C、F在线段BE上,∠ABC=∠DEF=90°,BC=EF,请只添加一个合适的条件使△ABC≌△DEF.(1)根据“ASA”,需添加的条件是;根据“HL”,需添加的条件是;(2)请从(1)中选择一种,加以证明.21.(6分)如图,,平分,于,交于,若,则______.22.(8分)如图①,在△ABC中,AB=AC,过AB上一点D作DE∥AC交BC于点E,以E为顶点,ED为一边,作∠DEF=∠A,另一边EF交AC于点F.(1)求证:四边形ADEF为平行四边形;(2)当点D为AB中点时,判断▱ADEF的形状;(3)延长图①中的DE到点G,使EG=DE,连接AE,AG,FG,得到图②,若AD=AG,判断四边形AEGF的形状,并说明理由.23.(8分)列分式方程解应用题元旦期间,甲、乙两位好友约着一起开两辆车自驾去黄山玩,其中面包车为领队,小轿车紧随其后,他们同时出发,当面包车行驶了200千米时,发现小轿车只行驶了180千米,若面包车的行驶速度比小轿车快10千米/小时,请问:(1)小轿车和面包车的速度分别多少?(2)当小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面100千米的地方碰头,他们正好同时到达,请问小轿车需要提速多少千米/小时?(3)小轿车发现落后时,为了追上面包车,他就马上提速,面包车速度不变,他们约定好在面包车前面s千米的地方碰头,他们正好同时到达,请问小轿车提速千米/小时.(请你直接写出答案即可)24.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?25.(10分)对于两个不相等的实数心、,我们规定:符号表示、中的较大值,如:.按照这个规定,求方程(为常数,且)的解.26.(10分)如图,点B,F,C,E在一条直线上,∠A=∠D,AC=DF,且AC∥DF.求证:△ABC≌△DEF.

参考答案一、选择题(每小题3分,共30分)1、A【解析】首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠BCD+∠ACD=90°,∠B+∠BCD=90°,再根据同角的补角相等可得到∠B=∠DCA,再利用三角形的外角与内角的关系可得到∠CFE=∠FEC,最后利用等角对等边可证出结论.【详解】∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是AB边上的高,∴∠B+∠BCD=90°,∴∠B=∠DCA,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠1+∠B=∠CFE,∠2+∠DCA=∠FEC,∴∠CFE=∠FEC,∴CF=CE,∴△CEF是等腰三角形.故选A【点睛】此题考查等腰三角形的判定,解题关键在于掌握判定定理.2、D【分析】用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.【详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,因此用反证法证明“a∥c”时,应先假设a与c不平行,故选D.【点睛】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.3、C【解析】试题分析:∵DC∥AB,∴∠DCA=∠CAB=65°.∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD.∴∠ADC=∠DCA="65°."∴∠CAD=180°﹣∠ADC﹣∠DCA="50°."∴∠BAE=50°.故选C.考点:1.面动旋转问题;2.平行线的性质;3.旋转的性质;4.等腰三角形的性质.4、A【分析】根据正比例函数的定义求解即可.【详解】解:∵y=x-2a+1是正比例函数,∴可得-2a+1=0解得a=,故选:A.【点睛】本题考查了正比例函数的定义,掌握知识点是解题关键.5、A【解析】根据勾股定理逆定理依次计算即可得到答案.【详解】A.,故不能构成直角三角形;B.,能构成直角三角形;C.,能构成直角三角形;D.,能构成直角三角形;故选:A.【点睛】此题考查勾股定理的逆定理,熟记定理并正确计算是解题的关键.6、D【分析】﹣2x2y3+xy和3x2y﹣5xy2不能合并同类项;(3a﹣2)(3a﹣2)是完全平方公式,计算结果为9a2+4﹣12a.【详解】解:A.﹣2x2y3+xy不是同类项,不能合并,故A错误;B.3x2y﹣5xy2不是同类项,不能合并,故B错误;C.(3a﹣2)(3a﹣2)=9a2+4﹣12a,故C错误;D.28x4y2÷7x3y=4xy,故D正确.故选:D.【点睛】本题考查合并同类项,整式的除法,完全平方公式;熟练掌握合并同类项,整式的除法的运算法则,牢记完全平方公式是解题的关键.7、A【分析】利用根的判别式确定一元二次方程根的情况.【详解】解:∴一元二次方程有两个不相等的实数根.故选:A.【点睛】本题考查一元二次方程的根的判别式,解题的关键是掌握利用根的判别式确定方程根的情况的方法.8、D【分析】根据最简二次根式是被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】A.==,不是最简二次根式,此选项不正确;B.=,不是最简二次根式,此选项不正确;C.=,不是最简二次根式,此选项不正确;D.是最简二次根式,此选项正确.故选D.【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.9、C【分析】根据三角形中线的定义可知.【详解】因为,所以一定是的中线.【点睛】本题考查三角形的中线,掌握三角形中线的定义是解题的关键.10、D【分析】设前一半每天读页,则后一半每天读(x+5)页,根据“书共240页,两周内归还”列出方程解答即可.【详解】设前一半每天读页,则后一半每天读(x+5)页,根据题意得:故选:D【点睛】本题考查的是分式方程的应用,能理解题意并分析出题目中的数量关系是关键.二、填空题(每小题3分,共24分)11、1或-1【分析】根据完全平方式的形式即可求出m的值.【详解】根据题意得,或,故答案为:1或-1.【点睛】本题主要考查完全平方式,掌握完全平方式的形式是解题的关键.12、16或1【分析】由等腰三角形的定义,可分为两种情况进行分析,分别求出周长即可.【详解】解:根据题意,则当5为腰时,有周长为:5+5+6=16;当6为腰时,有周长为:6+6+5=1;故答案为:16或1.【点睛】本题考查了等腰三角形的定义,解题的关键是熟练掌握等腰三角形的定义,注意运用分类讨论的思想进行解题.13、1【分析】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.根据对称的性质可以证得:△COD是等边三角形,据此即可求解.【详解】如图,作P关于OA,OB的对称点C,D.连接OC,OD.则当M,N是CD与OA,OB的交点时,△PMN的周长最短,最短的值是CD的长.∵点P关于OA的对称点为C,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=1,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=1.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=1.【点睛】此题主要考查轴对称--最短路线问题,综合运用了等边三角形的知识.正确作出图形,理解△PMN周长最小的条件是解题的关键.14、1620【分析】由表提供的信息可知,把金额乘以对应人数,然后相加即可.【详解】解:根据题意,得,总金额为:元;故答案为1620.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是读懂题意,根据表格中的数据进行计算.15、12n【分析】首末两项是3n和2这两个数的平方,那么中间一项为加上或减去2x和1积的2倍,据此解答即可.【详解】由题意得,可以添加12n,此时,符合题意.故答案为:12n(答案不唯一).【点睛】本题考查了完全平方公式,熟练掌握完全平方公式(a±b)2=a2±2ab+b2是解答本题的关键.16、【分析】先提取公因式3xy,再对余下的多项式利用平方差公式继续分解.【详解】3x3y﹣12xy=3xy(x2﹣4)=3xy(x+2)(x﹣2).故答案为:3xy(x+2)(x﹣2).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17、5°【分析】根据第一个△ABA1中,∠B=20°,AB=A1B,可得∠BA1A=80°,依次得∠CA2A1=40°…即可得到规律,从而求得以点A4为顶点的等腰三角形的底角的度数.【详解】∵△ABA1中,∠B=20°,AB=A1B,∴∠BA1A==80°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1==40°同理可得:∠DA3A2=20°,∠EA4A3=10°,∴∠An=,∴以点A4为顶点的等腰三角形的底角的度数为:∠A5==5°.故答案为5°.【点睛】此题主要考查三角形的角度规律的探究,解题的关键是熟知等腰三角形的性质.18、40°【分析】根据等腰三角形的性质得出∠B=∠C=40°,再根据垂直平分线的性质解答即可.【详解】解:∵在中,,∴,又∵的垂直平分线分别交,于点,,∴AE=BE,∴∠BAE=∠B=40°,故答案为:40°.【点睛】本题考查了等腰三角形的性质及垂直平分线的性质,灵活运用上述性质进行推导是解题的关键.三、解答题(共66分)19、(1)62;(2),理由详见解析;(3);.【分析】(1)根据平行线的性质,得到∠APE=∠PAB=25°,∠CPE=∠PCD=37°,即可得到∠APC;(2)过P作PE∥AD交AC于E,推出AB∥PE∥DC,根据平行线的性质得出∠APE=α,∠CPE=β,即可得出答案;(3)分两种情况:P在BD延长线上;P在DB延长线上,分别画出图形,根据平行线的性质得出∠α=∠APE,∠β=∠CPE,即可得出答案;【详解】解:如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠PAB=25°,∠CPE=∠PCD=37°,∴∠APC=25°+37°=62°;故答案为:;与之间的数量关系是:;理由:如图,过点作交于点,∵,;如图3,所示,当P在射线上时,过P作PE∥AB,交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∴∠APC=∠1∠PCD,∴∠APC=αβ,∴当P在射线上时,;如图4所示,当P在线段OB上时,

同理可得:∠APC=βα,∴当P在线段OB上时,.故答案为:;.【点睛】本题主要考查了平行线的性质和判定的应用、三角形内角和定理的证明、外角的性质,主要考查学生的推理能力,第3问在解题时注意分类讨论思想的运用.20、(1)∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE,证明见解析.【分析】(1)根据题意添加条件即可;(2)选择添加条件AC=DE,根据“HL”证明即可.【详解】(1)根据“ASA”,需添加的条件是∠ACB=∠DFE,根据“HL”,需添加的条件是AC=DF,故答案为:∠ACB=∠DFE,AC=DF;(2)选择添加条件AC=DE证明,证明:∵∠ABC=∠DEF=90°,∴在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).【点睛】本题考查了全等三角形的判定,熟知全等三角形的判定定理是解题关键,证明三角形全等时注意条件的对应.21、1【解析】过点P作PE⊥OA于E,根据角平分线定义可得∠AOP=∠BOP=15°,再由两直线平行,内错角相等可得∠BOP=∠OPC=15°,然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=10°,再根据直角三角形10°角所对的直角边等于斜边的一半解答.【详解】解:如图,过点作于,∵,平分,∴.∵,∴,∴,又∵,∴,∵,于,于,∴,故答案为1.【点睛】本题考查了直角三角形10°角所对的直角边等于斜边的一半,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及平行线的性质,作辅助线构造出含10°的直角三角形是解题的关键.22、(1)证明见解析;(2)▱ADEF的形状为菱形,理由见解析;(3)四边形AEGF是矩形,理由见解析.【解析】(1)根据平行线的性质得到∠BDE=∠A,根据题意得到∠DEF=∠BDE,根据平行线的判定定理得到AD∥EF,根据平行四边形的判定定理证明;(2)根据三角形中位线定理得到DE=AC,得到AD=DE,根据菱形的判定定理证明;(3)根据等腰三角形的性质得到AE⊥EG,根据有一个角是直角的平行四边形是矩形证明.【详解】(1)证明:∵DE∥AC,∴∠BDE=∠A,∵∠DEF=∠A,∴∠DEF=∠BDE,∴AD∥EF,又∵DE∥AC,∴四边形ADEF为平行四边形;(2)解:□ADEF的形状为菱形,理由如下:∵点D为AB中点,∴AD=AB,∵DE∥AC,点D为AB中点,∴DE=AC,∵AB=AC,∴AD=DE,∴平行四边形ADEF为菱形,(3)四边形AEGF是矩形,理由如下:由(1)得,四边形ADEF为平行四边形,∴AF∥DE,AF=DE,∵EG=DE,∴AF∥DE,AF=GE,∴四边形AEGF是平行四边形,∵AD=AG,EG=DE,∴AE⊥EG,∴四边形AEGF是矩形.故答案为:(1)证明见解析;(2)菱形;(3)矩形.【点睛】本题考查的是平行四边形、矩形、菱形的判定,掌握它们的判定定理是解题的关键.23、(1)小轿车的速度是90千米/小时,面包车的速度是100千米/小时;(2)小轿车需要提速30千米/小时;(3)【分析】(1)设小轿车的速度是x千米/小时,由题意可列出分式方程即可求解;(2)设小轿车需要提速a千米/小时,由题意可列出分式方程即可求解;(3)设小轿车需要提速b千米/小时,把(2)中100千米换成s即可求解.【详解】(1)解:设小轿车的速度是x千米/小时,由题意列方程得:解得x=90经检验x=90是原方程的解,x+10=100答:小轿车的速度是90千米/小时,面包车的速度是100千米/小时.(2)解:设小轿车需要提速a千米/小时,由题意列方程得解得:a=30经检验a=30是原方程的解答:小轿车需要提速30千米/小时.(3)设小轿车需要提速b千米/小时,由题意列方程得解得b=经检验a=是原方程的解故小轿车需要提速千米/小时故答案为:.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论