版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个 B.3个 C.2个 D.1个2.下列图案中不是轴对称图形的是()A. B. C. D.3.如图所示,在中,,平分,交于点D,,,DE⊥AB,则()A. B. C. D.4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有1.111111176克,用科学记数法表示是()A.7.6×118克 B.7.6×11-7克C.7.6×11-8克 D.7.6×11-9克5.下列交通标识不是轴对称图形的是()A. B. C. D.6.若是完全平方式,则常数k的值为()A.6 B.12 C. D.7.如图,由8个全等的小长方形拼成一个大正方形,线段AB的端点都在小长方形的顶点上,若点C是某个小长方形的顶点,连接CA,CB,那么满足△ABC是等腰三角形的点C的个数是()A.3 B.4 C.5 D.68.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差 B.中位数 C.众数 D.平均数9.下列图形中,不是轴对称图形的是()A.角 B.等边三角形 C.平行四边形 D.圆10.如图,在中,,是的平分线交于点.若,,,那么的面积是()A. B. C. D.二、填空题(每小题3分,共24分)11.因式分解:=______,=________.12.已知,.当____时,.13.如图,△ABC≌△DCB,∠DBC=35°,则∠AOB的度数为_____.14.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为________.15.如图,在中,,,边的垂直平分线交,于,,则的周长为__________.16.若点B(m+4,m-1)在x轴上,则m=_____;17.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于__________度.18.已知点A(x,2),B(﹣3,y),若A,B关于x轴对称,则x+y等于_____.三、解答题(共66分)19.(10分)某中学八年级学生在学习等腰三角形的相关知识时时,经历了以下学习过程:(1)(探究发现)如图1,在中,若平分,时,可以得出,为中点,请用所学知识证明此结论.(2)(学以致用)如果和等腰有一个公共的顶点,如图2,若顶点与顶点也重合,且,试探究线段和的数量关系,并证明.(3)(拓展应用)如图3,在(2)的前提下,若顶点与顶点不重合,,(2)中的结论还成立吗?证明你的结论20.(6分)某超市在2017年“双11”,销售一批用16800元购进的中老年人保暖内衣,发现供不应求.为了备战“双12”,积极参与支付宝扫码领红包活动,超市又用36400元购进了第二批这种保暖内衣,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该超市购进的第一批保暖内衣是多少件?(2)两批保暖内衣按相同的标价销售,最后剩下的50件按六折优惠卖出,两批保暖内衣全部售完后利润没有低于进价的20%(不考虑其他因素),请计算每件保暖内衣的标价至少是多少元?21.(6分)如图所示,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.22.(8分)如图所示,在中,和是高,它们相交于点,且.(1)求证:.(2)求证:.23.(8分)先化简,再求值:,其中m=.24.(8分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?25.(10分)如图,,,,请你判断是否成立,并说明理由.26.(10分)图a是一个长为2m、宽为2n的长方形,沿图中实现用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.(1)图b中,大正方形的边长是.阴影部分小正方形的边长是;(2)观察图b,写出(m+n)2,(m﹣n)2,mn之间的一个等量关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【解析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【详解】解:由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,综上正确的一共有3个,故选B.【点睛】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.2、D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、C【分析】根据线段的和差即可求得DC,再根据角平分线的性质即可得出DE=DC.【详解】解:∵,,∴,∵,平分,DE⊥AB,∴DE=DC=6cm.故选:C.【点睛】本题考查角平分线的性质.角平分线上的点到角两边距离相等.4、C【解析】试题解析:对于绝对值小于1的数,用科学记数法表示为a×11n形式,其中1≤a<11,n是一个负整数,除符号外,数字和原数左边第一个不为1的数前面1的个数相等,根据以上内容得:1.11
111
1176克=7.6×11-8克,故选C.5、C【解析】平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形称为轴对称图形,利用轴对称图形的定义即可求解.【详解】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选:C.【点睛】本题主要考查的是轴对称图形的定义,解此题的关键是寻找对称轴,图形沿对称轴折叠后可完全重合.6、D【解析】∵4a2+kab+9b2=(2a)2+kab+(3b)2,∴kab=±2⋅2a⋅3b,解得k=±12.故选D.7、D【分析】根据等腰三角形的判定即可得到结论.【详解】解:如图所示,使△ABP为等腰三角形的点P的个数是6,
故选:D.【点睛】本题考查了等腰三角形的判定,正确的找出符合条件的点P是解题的关键.8、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差9、C【解析】分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解:A、角是轴对称图形;B、等边三角形是轴对称图形;C、平行四边形只是中心对称图形,不是轴对称图形.D、圆既是轴对称图形,也是中心对称图形;故选C.10、A【分析】作DE⊥AB,由角平分线性质可得DE=ED,再根据三角形的面积公式代入求解即可.【详解】过点D作DE⊥AB交AB于E,∵AD平分∠BAC,∴ED=CD=m,∵AB=n,∴S△ABC=.故选A.【点睛】本题考查角平分线的性质,关键在于通过角平分线的性质得到AB边上高的长度.二、填空题(每小题3分,共24分)11、(x+9)(x-9)3a【分析】(1).利用平方差公式分解因式;(2).先提公因式,然后利用完全平方公式分解因式.【详解】(1)(x+9)(x-9);(2).【点睛】本题考查了利用提公因式法分解因式和利用公式法分解因式,解题的关键是根据式子特点找到合适的办法分解因式.12、【分析】由得到关于x的一元二次方程,求解方程即可得到x的值.【详解】当时,则有:解得故当时,.故答案为:.【点睛】本题主要考查了解一元二次方程,由得到一元二次方程是解决本题的关键.13、70°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】∵△ABC≌△DCB,∠DBC=35°,∴∠ACB=∠DBC=35°,∴∠AOB=∠ACB+∠DBC=35°+35°=70°.故答案为70°.【点睛】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.14、1.1【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×11=1.1,∴DF=1.1.故答案为1.1.考点:等腰三角形的判定与性质;含30度角的直角三角形.15、12【分析】先根据线段垂直平分线的性质可得,通过观察图形可知周长等于,再根据已知条件代入数据计算即可得解.【详解】∵是的垂直平分线∴∵,∴的周长故答案是:【点睛】本题涉及到的知识点主要是线段垂直平分线的性质,能够灵活运用知识点将求三角形周长的问题进行转化是解题的关键.16、1【分析】由题意直接根据x轴上的点的纵坐标为0列出方程求解即可.【详解】解:∵点B(m+4,m-1)在x轴上,∴m-1=0,∴m=1.故答案为:1.【点睛】本题考查点的坐标,熟记x轴上的点的纵坐标为0是解题的关键.17、1800【详解】多边形的外角和等于360°,则正多边形的边数是360°÷30°=12,所以正多边形的内角和为.18、﹣1.【解析】让横坐标不变,纵坐标互为相反数列式求得x,y的值,代入所给代数式求值即可.【详解】∵A,B关于x轴对称,∴x=﹣3,y=﹣2,∴x+y=﹣1.故答案为:﹣1.【点睛】本题考查了关于x轴对称的点的特点及代数式求值问题;用到的知识点为:两点关于x轴对称,纵坐标互为相反数,横坐标不变.三、解答题(共66分)19、(1)详见详解;(2)DF=2BE,证明详见详解;(3)DF=2BE,证明详见详解【分析】(1)只要证明△ADB≌△ADC(ASA)即可;(2)如图2中,延长BE交CA的延长线于K,只要证明△BAK≌△CAD(ASA)即可;(3)作FK∥CA交BE的延长线于K,交AB于J,利用(2)中的结论证明即可.【详解】解:(1)如图1中,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵DA平分∠BAC,∴∠DAB=∠DAC,∵AD=AD,∴△ADB≌△ADC(ASA),∴AB=AC,BD=DC.(2)结论:DF=2BE.理由:如图2中,延长BE交CA的延长线于K.∵CE平分∠BCK,CE⊥BK,∴由(1)中结论可知:CB=CK,BE=KE,∵∠BAK=∠CAD=∠CEK=90°,∴∠ABK+∠K=90°,∠ACE+∠K=90°,∴∠ABK=∠ACD,∵AB=AC,∴△BAK≌△CAD(ASA),CD=BK,∴CD=2BE,即DF=2BE.(3)如图3中,结论不变:DF=2BE.理由:作FK∥CA交BE的延长线于K,交AB于J.∵FK∥AC,∴∠FJB=∠A=90°,∠BFK=∠BCA,由(2)可知Rt△ABC为等腰三角形∵∠JBF=45°,∴△BJF是等腰直角三角形,∵∠BFE=∠ACB,∴∠BFE=∠BFJ,由(2)可知:DF=2BE.【点睛】此题考查了全等三角形的判定和性质;等腰三角形的判定和性质性质及直角三角形的性质等知识点,在做题时正确的添加辅助线是解决问题的关键.20、(1)该超市购进的第一批保暖内衣是1件;(2)每件保暖内衣的标价至少是159.2元【分析】(1)根据“所购数量是第一批购进量的2倍,但单价贵了10元”,建立方程求解,即可得出结论;(2)根据“两批保暖内衣全部售完后利润没有低于进价的20%”,建立不等式求解,即可得出结论.【详解】解:(1)设该商家购进的第一批保暖内衣是x件.根据题意,得解方程,得x=1.经检验,x=1是原方程的解,且符合题意.答:该超市购进的第一批保暖内衣是1件.(2)根据题意可知两次一共购进保暖内衣为3x=3×1=420(件).设每件保暖内衣的标价y元.根据题意,得(420﹣50)y+50×0.2y≥(12800+32400)×(1+20%).解不等式,得y≥159.2.答:每件保暖内衣的标价至少是159.2元.【点睛】本题主要考查了分式方程的应用及不等式的应用,根据题意列出相应的分式方程及不等式是解题的关键.21、证明见解析.【解析】试题分析:由可得则可证明,因此可得试题解析:即,在和中,考点:三角形全等的判定.22、(1)证明见详解;(2)证明见详解.【分析】(1)先证,再结合已知条件即可证得;(2)由,得AH=BC,再由AD为底边上的高,得BC=2DC,即可得出结论.【详解】(1)证明:是的高,....在和中,.(2),.是的高,,,.【点睛】本题考查了全等三角形的判定和性质以及等腰三角形的性质,是中考常见题型,比较简单.23、,.【分析】先根据分式的混合运算法则化简,再把m的值代入求值即可.【详解】原式===.当m=时,原式==-.【点睛】本题考查分式的运算,熟练掌握运算法则是解题关键.24、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元.【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价﹣进价,即可得出关于y的一元一次方程,解之即可得出结论.【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900×(1﹣10%)﹣y=35%y,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非遗美术单元课程设计
- 非线性回归分析课程设计
- 海绵城市施工方案作业方案
- 隔离开关分析课程设计
- 防火阻燃材料施工方案
- 低钙血症的临床护理
- 人行天桥钢结构工程吊装方案
- 2024置换合同标准范本
- 2024房地产合同 商品房代理销售合同
- 用关系式表示变量间的关系课件
- GB 29201-2020 食品安全国家标准 食品添加剂 氨水及液氨
- 电力企业今冬明春安全生产和火灾隐患排查整治方案
- 硫酸安全技术说明书MSDS
- 城市轨道交通服务员职业技能大赛理论试题库
- 儿科及成人营养不良筛查表(STAMP)
- 五邑大学交通工程(轨道交通电气化)专业
- 四年级语文上册句子整理复习统编课件ppt
- 物联网能耗监控项目性能测试报告V0全解
- 制程品质管控作业流程图
- 香港联合交易所有限公司证券上市规则
- 爆破作业安全技术交底
评论
0/150
提交评论