


版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年山西省太原市杏花岭区育英中学中考数学仿真试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、测试卷卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>02.如图,直线被直线所截,,下列条件中能判定的是()A. B. C. D.3.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤4.﹣6的倒数是()A.﹣16 B.15.下列各图中,∠1与∠2互为邻补角的是()A. B.C. D.6.如图,等边△ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿B﹣D﹣E匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,△AMN的面积为y,能大致刻画y与x的函数关系的图象是()A. B.C. D.7.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.108.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.109.肥皂泡的泡壁厚度大约是0.00000071米,数字0.00000071用科学记数法表示为()A.7.1×107 B.0.71×10﹣6 C.7.1×10﹣7 D.71×10﹣810.下列说法中不正确的是()A.全等三角形的周长相等B.全等三角形的面积相等C.全等三角形能重合D.全等三角形一定是等边三角形二、填空题(共7小题,每小题3分,满分21分)11.计算:|-3|-1=__.12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值是.13.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.14.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN=AK.若∠MKN=40°,则∠P的度数为___15.已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_____________.16.等腰中,是BC边上的高,且,则等腰底角的度数为__________.17.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).三、解答题(共7小题,满分69分)18.(10分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|19.(5分)先化简,再求值:,其中与2,3构成的三边,且为整数.20.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.21.(10分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?若该工厂新购得65张规格为的C型正方形板材,将其全部切割成A型或B型板材不计损耗,用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只22.(10分)如图,已知▱ABCD.作∠B的平分线交AD于E点。(用尺规作图法,保留作图痕迹,不要求写作法);若▱ABCD的周长为10,CD=2,求DE的长。23.(12分)某小学为每个班级配备了一种可以加热的饮水机,该饮水机的工作程序是:放满水后,接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降,水温y(℃)和通电时间x(min)成反比例关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温为20℃,接通电源后,水温和时间的关系如下图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想再8:10上课前能喝到不超过40℃的开水,问他需要在什么时间段内接水.24.(14分)已知关于x的方程.当该方程的一个根为1时,求a的值及该方程的另一根;求证:不论a取何实数,该方程都有两个不相等的实数根.
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【答案解析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【答案解析】测试卷解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本选项正确;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本选项错误;故选C.3、C【答案解析】测试卷解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.4、A【答案解析】解:﹣6的倒数是﹣165、D【答案解析】根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选D.6、A【答案解析】
根据题意,将运动过程分成两段.分段讨论求出解析式即可.【题目详解】∵BD=2,∠B=60°,∴点D到AB距离为,当0≤x≤2时,y=;当2≤x≤4时,y=.根据函数解析式,A符合条件.故选A.【答案点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式.7、D【答案解析】
根据有理数乘法法则计算.【题目详解】﹣2×(﹣5)=+(2×5)=10.故选D.【答案点睛】考查了有理数的乘法法则,(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0;(3)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4)几个数相乘,有一个因数为0时,积为0.8、C【答案解析】
由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【题目详解】∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=6,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=6+6=12,即△PCD的周长为12,故选:C.【答案点睛】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED是解题的关键.9、C【答案解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】0.00000071的小数点向或移动7位得到7.1,所以0.00000071用科学记数法表示为7.1×10﹣7,故选C.【答案点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10、D【答案解析】
根据全等三角形的性质可知A,B,C命题均正确,故选项均错误;D.错误,全等三角也可能是直角三角,故选项正确.故选D.【答案点睛】本题考查全等三角形的性质,两三角形全等,其对应边和对应角都相等.二、填空题(共7小题,每小题3分,满分21分)11、2【答案解析】
根据有理数的加减混合运算法则计算.【题目详解】解:|﹣3|﹣1=3-1=2.故答案为2.【答案点睛】考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.12、2【答案解析】测试卷分析:分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是12,右上是1.解:分析可得图中阴影部分的两个数分别是左下是12,右上是1,则m=12×1﹣10=2.故答案为2.考点:规律型:数字的变化类.13、4【答案解析】由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=AD=×6=4.故答案为4.点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.14、100°【答案解析】
由条件可证明△AMK≌△BKN,再结合外角的性质可求得∠A=∠MKN,再利用三角形内角和可求得∠P.【题目详解】解:∵PA=PB,∴∠A=∠B,在△AMK和△BKN中,,∴△AMK≌△BKN(SAS),∴∠AMK=∠BKN,∵∠A+∠AMK=∠MKN+∠BKN,∴∠A=∠MKN=40°,∴∠P=180°﹣∠A﹣∠B=180°﹣40°﹣40°=100°,故答案为100°【答案点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK≌△BKN是解题的关键.15、【答案解析】分析:先移项,整理为一元二次方程,让根的判别式大于0求值即可.详解:由图象可知:二次函数y=ax2+bx+c的顶点坐标为(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有两个不相等的实数根,∴方程ax2+bx+c-k=0的判别式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵抛物线开口向下∴a<0∴1-k>0∴k<1.故答案为k<1.点睛:本题主要考查了抛物线与x轴的交点问题,以及数形结合法;二次函数中当b2-4ac>0时,二次函数y=ax2+bx+c的图象与x轴有两个交点.16、,,【答案解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【题目详解】①如图,若点A是顶角顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如图,若点A是底角顶点,且AD在△ABC外部时,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如图,若点A是底角顶点,且AD在△ABC内部时,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;综上所述,△ABC底角的度数为45°或15°或75°;故答案为,,.【答案点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.17、(a+b)2=a2+2ab+b2【答案解析】
完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【题目详解】解:,【答案点睛】此题考查了完全平方公式的几何意义,从不同角度思考,用不同的方法表示相应的面积是解题的关键.三、解答题(共7小题,满分69分)18、4【答案解析】
直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.【题目详解】(﹣2)0+()﹣1+4cos30°﹣|4﹣|=1+3+4×﹣(4﹣2)=4+2﹣4+2=4.【答案点睛】此题主要考查了实数运算,正确化简各数是解题关键.19、1【答案解析】测试卷分析:先进行分式的除法运算,再进行分式的加减法运算,根据三角形三边的关系确定出a的值,然后代入进行计算即可.测试卷解析:原式=,∵a与2、3构成△ABC的三边,∴3−2<a<3+2,即1<a<5,又∵a为整数,∴a=2或3或4,∵当x=2或3时,原分式无意义,应舍去,∴当a=4时,原式==120、(1)详见解析;(2)1+【答案解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【题目详解】(1)证明:连结.如图,与相切于点D,是的直径,即(2)解:在中,.【答案点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.21、(1)最多可以做25只竖式箱子;(2)能制作竖式、横式两种无盖箱子分别为5只和30只;(3)47或1.【答案解析】
表示出竖式箱子所用板材数量进而得出总金额即可得出答案;设制作竖式箱子a只,横式箱子b只,利用A型板材65张、B型板材110张,得出方程组求出答案;设裁剪出B型板材m张,则可裁A型板材张,进而得出方程组求出符合题意的答案.【题目详解】解:设最多可制作竖式箱子x只,则A型板材x张,B型板材4x张,根据题意得解得.答:最多可以做25只竖式箱子.设制作竖式箱子a只,横式箱子b只,根据题意,得,解得:.答:能制作竖式、横式两种无盖箱子分别为5只和30只.设裁剪出B型板材m张,则可裁A型板材张,由题意得:,整理得,,.竖式箱子不少于20只,或22,这时,或,.则能制作两种箱子共:或.故答案为47或1.【答案点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是理解题意,列出等式.22、(1)作图见解析;(2)1【答案解析】
(1)以点B为圆心,任意长为半径画弧分别与AB、BC相交。然后再分别以交点为圆心,以交点间的距离为半径分别画弧,两弧相交于一点,画出射线BE即得.(2)根据平行四边形的对边相等,可得AB+AD=5,由两直线平行内错角相等可得∠AEB=∠EBC,利用角平分线即得∠ABE=∠EBC,即证∠AEB=∠ABE.根据等角对等边可得AB=AE=2,从而求出ED的长.【题目详解】(1)解:如图所示:(2)解:∵平行四边形ABCD的周长为10∴AB+AD=5∵AD//BC∴∠AEB=∠EBC又∵BE平分∠ABC∴∠ABE=∠EBC∴∠AEB=∠ABE∴AB=AE=2∴ED=AD-AE=3-2=1【答案点睛】此题考查作图-基本作图和平行四边形的性质,解题关键在于掌握作图法则23、(1)当0≤x≤8时,y=10x+20;当8<x≤a时,y=;(2)40;(3)要在7:50~8:10时间段内接水.【答案解析】
(1)当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年南昌大湾生态建设集团有限公司(含子公司)人才招聘笔试参考题库附带答案详解
- 电梯内礼仪知识
- 志愿服务条例培训
- 内科护理工作半年总结
- 2024年10月临淄区规上工业企业招聘笔试参考题库附带答案详解
- 二零二五房产还款协议书
- 二零二五店面出租协议合同书
- 湖北省宜昌第二中学2025届高三3月第二次月考综合试题
- 二零二五版停车场租赁协议标准模板
- 技术入股股权转让协议书二零二五年
- 2025-2030全球及中国军事无线电系统行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024年河北省普通高中学业水平选择性考试物理试题含答案
- Unit 4 Healthy food(说课稿)-2024-2025学年人教PEP版(2024)英语三年级下册
- 2025年全国叉车证理论考试题库(含答案)
- 99S203 消防水泵接合器安装图集
- 营养医师及营养科工作解读课件
- DB13T 5461-2021 连翘种子种苗质量标准
- Q∕SY 04797-2020 燃油加油机应用规范
- 日本古建筑-奈良篇
- 市场主体住所(经营场所)申报承诺书
- 传感器与检测技术(陈杰)课后习题答案(共48页)
评论
0/150
提交评论