2023届福建省仙游县联考八年级数学第一学期期末经典模拟试题含解析_第1页
2023届福建省仙游县联考八年级数学第一学期期末经典模拟试题含解析_第2页
2023届福建省仙游县联考八年级数学第一学期期末经典模拟试题含解析_第3页
2023届福建省仙游县联考八年级数学第一学期期末经典模拟试题含解析_第4页
2023届福建省仙游县联考八年级数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.一个圆柱形容器的容积为V,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水,向容器中注满水的全过程共用时间t分钟.设小水管的注水速度为x立方米/分钟,则下列方程正确的是()A. B.C. D.2.在中,,,第三边的取值范围是()A. B. C. D.3.下列命题为假命题的是()A.三角形三个内角的和等于180°B.三角形两边之和大于第三边C.三角形的面积等于一条边的长与该边上的高的乘积的一半D.同位角相等4.若等腰三角形一腰上的高与另一腰的夹角为36°,则它的顶角为()A.36° B.54° C.72°或36° D.54°或126°5.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()

A. B.C. D.6.如果下列各组数是三角形的三边,则能组成直角三角形的是()A. B. C. D.7.已知点,都在直线上,则、大小关系是()A. B. C. D.不能比较8.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折得到△FMN,若MF∥AD,FN∥DC,则∠D的度数为()A.115° B.105° C.95° D.85°9.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC⋅AH D.AB=AD10.等式成立的x的取值范围在数轴上可表示为(

)A. B. C. D.二、填空题(每小题3分,共24分)11.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.12.已知等腰三角形的其中两边长分别为,,则这个等腰三角形的周长为_____________.13.自然数4的平方根是______14.如果正多边形的一个外角为45°,那么它的边数是_________.15.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是________.16.“直角三角形的两个锐角互余”的逆命题是______命题填“真”或“假”.17.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.18.点A(2,-3)关于x轴对称的点的坐标是______.三、解答题(共66分)19.(10分)在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S△ABC=30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△OPD全等,求点P的坐标.20.(6分)正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),求:(1)k的值;(2)两条直线与x轴围成的三角形的面积.21.(6分)如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证△ACD≌△BFD(2)求证:BF=2AE;(3)若CD=,求AD的长.22.(8分)解方程组:23.(8分)已知一次函数,它的图像经过,两点.(1)求与之间的函数关系式;(2)若点在这个函数图像上,求的值.24.(8分)如图,已知,,三点.(1)作关于轴的对称图形,写出点关于轴的对称点的坐标;(2)为轴上一点,请在图中找出使的周长最小时的点并直接写出此时点的坐标(保留作图痕迹).25.(10分)两位同学将一个二次三项式分解因式,一位同学因看错了一次项的系数而分解成,另一位同学因看错了常数而分解成.(1)求原多项式;(2)将原多项式进行分解因式.26.(10分)如图,已知,依据作图痕迹回答下面的问题:(1)和的位置关系是_________________;(2)若,时,求的周长;(3)若,,求的度数.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据题意先求出注入前一半容积水量所需的时间为,再求出后一半容积注水的时间为,故可列出方程.【详解】根据题意得出前一半容积水量所需的时间为,后一半容积注水的时间为,即可列出方程为,故选C.【点睛】此题主要考查分式方程的应用,解题的关键是找到等量关系进行列方程.2、D【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边的边长的取值范围.【详解】∵AB=3,AC=5,∴5-3<BC<5+3,即2<BC<8,故选D.【点睛】考查了三角形三边关系,一个三角形任意两边之和大于第三边,任意两边之差小于第三边.熟练掌握三角形的三边关系是解题关键.3、D【分析】根据三角形内角和定理对A进行判断;根据三角形三边的关系对B进行判断;根据三角形面积公式对C进行判断;根据同位角的定义对D进行判断.【详解】A、三角形三个内角的和等于180°,所以A选项为真命题;

B、三角形两边之和大于第三边,所以B选项为真命题;

C、三角形的面积等于一条边的长与该边上的高的乘积的一半,所以C选项为真命题,

D、两直线平行,同位角相等,所以D选项为假命题.

故选:D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、D【解析】根据题意画出图形,一种情况等腰三角形为锐角三角形,即可推出顶角的度数为50°.另一种情况等腰三角形为钝角三角形,由题意,即可推出顶角的度数为130°.【详解】①如图1,等腰三角形为锐角三角形,

∵BD⊥AC,∠ABD=36°,

∴∠A=54°,

即顶角的度数为54°.

②如图2,等腰三角形为钝角三角形,

∵BD⊥AC,∠DBA=36°,

∴∠BAD=54°,

∴∠BAC=126°.

故选D.【点睛】本题考查了直角三角形的性质、等腰三角形的性质,解题的关键在于正确的画出图形,结合图形,利用数形结合思想求解.5、B【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选B.6、A【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形,分析得出即可.【详解】A.∵1+=2,∴此三角形是直角三角形,正确;B.∵1+3≠4,∴此三角形不是直角三角形,不符合题意;C.∵2+3≠6,∴此三角形不是直角三角形,不合题意;D.∵4+5≠6,∴此三角形不是直角三角形,不合题意.故选:A.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握计算公式.7、A【分析】先根据一次函数的解析式判断出函数的增减性,再根据-4<1即可得出结论.【详解】解:∵一次函数中,k=-1<0,

∴y随x的增大而减小,

∵-4<1,

∴y1>y1.

故选:A.【点睛】本题考查一次函数的性质,对于一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小;熟练掌握一次函数的性质是解题关键.8、C【分析】首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.【详解】∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,∴∠BMF=100°,∠FNB=70°,∵将△BMN沿MN翻折,得△FMN,∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,∴∠F=∠B=180°-50°-35°=95°,∴∠D=360°-100°-70°-95°=95°.故选C.【点睛】此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.9、A【详解】解:如图连接CD、BD,∵CA=CD,BA=BD,

∴点C、点B在线段AD的垂直平分线上,

∴直线BC是线段AD的垂直平分线,

故A正确.

B、错误.CA不一定平分∠BDA.

C、错误.应该是S△ABC=•BC•AH.

D、错误.根据条件AB不一定等于AD.

故选A.10、B【分析】根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.二、填空题(每小题3分,共24分)11、1【分析】根据众数的定义,即可得到答案.【详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【点睛】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键.12、【分析】由等腰三角形的定义,对腰长进行分类讨论,结合三角形的三边关系,即可得到答案.【详解】解:∵等腰三角形的其中两边长分别为,,当4为腰长时,,不能构成三角形;当9为腰长时,能构成三角形,∴这个等腰三角形的周长为:;故答案为:22.【点睛】本题考查了等腰三角形的定义,以及三角形的三边关系,解题的关键是熟练掌握等腰三角形的定义进行解题.注意运用分类讨论的思想.13、±1【分析】直接利用平方根的定义分析得出答案.【详解】解:自然数4的平方根是±1.

故答案为:±1.【点睛】此题主要考查了平方根,正确把握平方根的定义是解题关键.14、8【详解】正多边形的一个外角为45°,那么它的边数是故答案为15、9:1【解析】试题分析:由图中可以看出,此时的时间为9:1.考点:镜面对称.16、真【分析】根据给出的命题将其结论与条件互换即得到其逆命题,然后分析其真假即可.【详解】解:逆命题为:如果三角形有两个角互余,则三角形为直角三角形.因为符合三角形内角和定理,故是真命题.故答案为真【点睛】本题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题.17、1【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==1cm.故答案为1.考点:平面展开-最短路径问题.18、(2,3)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.三、解答题(共66分)19、(1);(2)m=4或m=12;(3)P1(12,6),P2(4,12),P3(36,-12)【分析】(1)运用待定系数法求解即可;(2)结合C的坐标,表示出三角形ABC的面积,分类求解即可;(3)针对P的位置进行分类讨论即可.【详解】(1)∵点A(0,15)在直线AB上,故可设直线AB的表达式为y=kx+15又∵点B(20,0)在直线AB上∴20k+15=0,∴k=,∴直线AB的表达为;(2)过C作CM∥x轴交AB于M∵点C的坐标为(m,9)∴点M的纵坐标为9,当y=9时,x+15=9,解得x=8,∴M(8,9),∴CM=|m-8|,∴S△ABC=S△AMC+S△BMC=CM·(yA-yM)+CM·(yM-yB)=CM·OA=|m-8|∵S△ABC=30,∴|m-8|=30,解得m=4或m=12;(3)①当点P在线段AB上时,(i)若点P在B,Q之间,当OQ=OD=12,且∠POQ=∠POD时,△OPQ≌△OPD,∵OA=15,OB=20,∴AB==25,设△AOB中AB边上的高为h,则AB·h=OA·OB,∴h=12,∴OQ⊥AB,∴PD⊥OB,∴点P的横坐标为12,当x=12时,y=x+15=6,∴P1(12,6),(ii)若点P在A,Q之间,当PQ=OD=12,且∠OPQ=∠POD时,有△POQ≌△OPD,则BP=OB=20,∴BP:AB=20:25=4:5,∴S△POB=S△AOB,作PH⊥OB于H,则S△POB=OB·PH,∴OB·PH=×OB·OA,∴PH=OA=×15=12,当y=12时,x+15=12,解得x=4,∴P2(4,12),②当点P在AB的延长线上时,(i)若点Q在B,P之间,且PQ=OD,∠OPQ=∠POD时,△POQ≌△OPD,作OM⊥AB于M,PN⊥OB于N,则PN=OM=12,∴点P的纵坐标为-12,当y=-12时,x+15=-12,解得x=36,∴P3(36,-12),(ii)若点Q在BP的延长线上或BP的反向延长线上,都不存在满足条件的P,Q两点.综上所述,满足条件的点P为P1(12,6),P2(4,12),P3(36,-12).【点睛】本题考查待定系数法求解析式,坐标与图形,全等三角形的性质等,熟练理解全等三角形的性质并灵活对问题进行分类讨论是解题关键.20、(1)k=5;(2).【解析】试题分析:(1)根据待定系数法将点P(1,m)代入函数中,即可求得k的值;

(2)先根据题意画出图形,再根据交点坐标即可求出三角形的面积.试题解析:(1)∵正比例函数y=2x的图象与一次函数y=-3x+k的图象交于点P(1,m),∴把点P(1,m)代入得m=2,m=-3+k,解得k=5;(2)由(1)可得点P的坐标为(1,2),∴所求三角形的高为2.∵y=-3x+5,∴其与x轴交点的横坐标为,∴S=××2=.21、(1)见解析;(1)见解析;(3)AD=1+【分析】(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等;(1)根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AE,从而得证;(3)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.【详解】(1)∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°,∴∠CAD=∠CBE,在△ADC和△BDF中,∠CAD=∠CBE,AD=BD,∠ADC=∠BDF=90°,∴△ACD≌△BFD(ASA)(1)由(1)可知:BF=AC∵AB=BC,BE⊥AC,∴AC=1AE,∴BF=1AE;(3)∵△ACD≌△BFD,∴DF=CD=,在Rt△CDF中,CF=,∵BE⊥AC,AE=EC,∴AF=CF=1.∴AD=AF+DF=1+【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,等腰三角形三线合一的性质的应用,以及线段垂直平分线上的点到线段两端点的距离相的性质,熟记各性质并准确识图是解题的关键.22、【分析】利用加减消元法:②-①×1即可解出y值,继而解出x值.【详解】解:②-①×1得:7y=14,解得∶y=1.把y=1代入①得:x=2.则方程组的解为:【点睛】本题考查了解二元一次方程组,解题的关键是选用合适的解法,本题从系数可看出利用加减消元法较为合适.23、(1);(2).【分析】(1)利用待定系数法容易求出一次函数的解析式;(2)将点代入一次函数解析式,容易求出的值.【详解】解:(1).将,两点分别代入一次函数可得:,解得..(2).将点代入一次函数解析式.,故.【点睛】本题考查了利用待定系数法求一次函数的解析式,以及利用一次函数解析式求点的坐标,灵活掌握待定系数法列方程以及解方程是解题关键.24、(1)画图见解析;(2)画图见解析,点的坐标为【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论