




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.对二次三项式4x2﹣6xy﹣3y2分解因式正确的是()A. B.C.
D.2.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,若BD=6,则CD的长为()A.2 B.4 C.6 D.33.若是完全平方式,与的乘积中不含的一次项,则的值为A.-4 B.16 C.4或16 D.-4或-164.小颖和小亮在做一道关于整数减法的作业题,小亮将被减数后面多加了一个0,得到的差为750;小颖将减数后面多加了一个0,得到的差为-420,则这道减法题的正确结果为()A.-30 B.-20 C.20 D.305.下列各式由左边到右边的变形中,是分解因式的为()A.10x2-5x=5x(2x-1) B.a(x+y)=ax+ayC.x2-4x+4=x(x-4)+4 D.x2-16+3x=(x-4)(x+4)+3x6.在平面直角坐标系中,点(﹣2,3)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④ B.①④③② C.①④②③ D.②①④③8.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A. B. C. D.9.若三角形的三边长分别为x、2x、9,则x的取值范围是()A.3<x<9 B.3<x<15 C.9<x<15 D.x>1510.角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.角平分线的作法依据的是()A.SSS B.SAS C.AAS D.ASA二、填空题(每小题3分,共24分)11.如图,在若中,是边上的高,是平分线.若则=_____12.如图,在中,,,是的中线,是的角平分线,交的延长线于点,则的长为_______.13.如图,长方形纸片ABCD沿对角线AC折叠,设点D落在D′处,BC交AD′于点E,AB=6cm,BC=8cm,求阴影部分的面积.14.函数中,自变量的取值范围是__________.15.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;16.如图所示,一个角60°的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2=_____.17.分解因式:ax2+2ax+a=____________.18.如图,已知△ABC的六个元素,其中a、b、c表示三角形三边的长,则下面甲、乙、丙三个三角形中和△ABC一定全等的图形是__.三、解答题(共66分)19.(10分)如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.20.(6分)如图,在平面直角坐标系中,(1)作出关于轴对称的,并写出三个顶点的坐标;(2)请计算的面积;21.(6分)某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.(1)分别写出两个厂的收费y(元)与印刷数量x(套)之间的函数关系式;(2)请在上面的直角坐标系中分别作出(1)中两个函数的图象;(3)若学校有学生2000人,为保证每个学生均有试卷,则学校至少要付出印刷费多少元?22.(8分)如图,,,于点.求证:.23.(8分)已知的三边长、、满足,试判定的形状.24.(8分)如图,直线EF与x轴、y轴分别相交于点E、F,点E的坐标为(-8,0),点F的坐标为(0,6),点A的坐标为(-6,0),点P(x,y)是直线EF上的一个动点,且P点在第二象限内;(1)求直线EF的解析式;(2)在点P的运动过程中,写出△OPA的面积S与x的函数表达式,并写出自变量x的取值范围;(3)探究,当点P运动到什么位置(求P的坐标)时,△OPA的面积是?25.(10分)如图所示,AB//DC,ADCD,BE平分∠ABC,且点E是AD的中点,试探求AB、CD与BC的数量关系,并说明你的理由.26.(10分)甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了_____h.开挖6h时甲队比乙队多挖了____m;(2)请你求出:①甲队在的时段内,y与x之间的函数关系式;②乙队在的时段内,y与x之间的函数关系式;(3)当x为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?
参考答案一、选择题(每小题3分,共30分)1、D【详解】解:4x2﹣6xy﹣3y2=4[x2﹣xy+(y)2]﹣3y2﹣y2=4(x﹣y)2﹣y2=(2x﹣y﹣y)(2x﹣y+y)=(2x﹣y)(2x﹣)故选D.【点睛】本题主要是用配方法来分解因式,但本题的计算,分数,根式多,所以学生还是很容易出错的,注意计算时要细心.2、D【分析】由作图过程可得DN是AB的垂直平分线,AD=BD=6,再根据直角三角形10度角所对直角边等于斜边一半即可求解.【详解】由作图过程可知:DN是AB的垂直平分线,∴AD=BD=6∵∠B=10°∴∠DAB=10°∴∠C=90°,∴∠CAB=60°∴∠CAD=10°∴CD=AD=1.故选:D.【点睛】本题考查了作图-基本作图、线段垂直平分线的性质、含10度角的直角三角形,解决本题的关键是掌握线段垂直平分线的性质.3、C【解析】利用完全平方公式,以及多项式乘以多项式法则确定出m与n的值,代入原式计算即可求出值.【详解】解:∵x2+2(m﹣3)x+1是完全平方式,(x+n)(x+2)=x2+(n+2)x+2n不含x的一次项,∴m﹣3=±1,n+2=0,解得:m=4,n=﹣2,此时原式=16;m=2,n=﹣2,此时原式=4,则原式=4或16,故选C.【点睛】此题考查了完全平方式,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.4、D【分析】根据题意,设被减数为x,减数为y,则,然后根据二元一次方程组的解法,求出x、y的值,判断出这道减法题的算式是多少即可.【详解】解:设被减数为x,减数为y,则,解得,∴这道减法题的正确结果应该为:80-50=1.故选D.【点睛】此题主要考查了有理数的减法运算,以及二元一次方程组的求解方法,要熟练掌握.5、A【分析】根据分解因式的定义逐项判断即得答案.【详解】解:A、10x2-5x=5x(2x-1),由左边到右边的变形是分解因式,故本选项符合题意;B、a(x+y)=ax+ay,由左边到右边的变形不是分解因式,故本选项不符合题意;C、x2-4x+4=x(x-4)+4,由左边到右边的变形不是分解因式,故本选项不符合题意;D、x2-16+3x=(x-4)(x+4)+3x,由左边到右边的变形不是分解因式,故本选项不符合题意;故选:A.【点睛】本题考查了分解因式的定义,属于基础概念题型,熟知概念是关键.6、B【分析】根据各象限内点的坐标特征解答.【详解】解:点(﹣2,3)在第二象限.故选B.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、B【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.【点睛】本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.8、B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.9、A【分析】根据三角形的三边关系列出不等式组即可求出x的取值范围.【详解】∵一个三角形的三边长分别为x,2x和1,∴,∴3<x<1.故选:A.【点睛】考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边.10、A【分析】根据角平分线的作法步骤,连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【详解】解:如下图所示:连接CP、DP在△OCP与△ODP中,由作图可知:∴△OCP≌△ODP(SSS)故选:A.【点睛】本题考查了角平分线的求证过程,从角平分线的作法中寻找证明三角形全等的条件是解决本题的关键。二、填空题(每小题3分,共24分)11、【分析】根据直角三角形内角和定理求出∠BAC,根据角平分线的定义求出∠BAE,结合图形计算即可.【详解】∵∴∵是平分线∴∵是边上的高,∴∴故答案为:.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.12、6【分析】根据等腰三角形的性质可得AD⊥BC,∠BAD=∠CAD=60°,求出∠DAE=∠EAB=30°,根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,从而AD=DF,求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF//AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°-60°=30°,∴AD=AB=×12=6,∴DF=6,故选:C.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,平行线的性质,掌握直角三角形30°角所对的直角边等于斜边的一半的性质是解题的关键.13、cm2.【解析】【试题分析】因为四边形ABCD是长方形,根据矩形的性质得:∠B=∠D=90°,AB=CD.由折叠的性质可知∠DAC=∠EAC,因为AD//BC,根据平行线的性质,得∠DAC=∠ECA,根据等量代换得,∠EAC=∠ECA,根据等角对等边,得AE=CE.设AE=xcm,在Rt△ABE中,利用勾股定理得,AB2+BE2=AE2,即62+(8-x)2=x2,解得x=,∴CE=AE=cm.∴S阴影=·CE·AB=××6=(cm2).【试题解析】∵四边形ABCD是长方形,∴∠B=∠D=90°,AB=CD.由折叠的性质可知可知∠DAC=∠EAC,∵AD//BC,∴∠DAC=∠ECA,∴∠EAC=∠ECA,∴AE=CE.设AE=xcm,在Rt△ABE中,AB2+BE2=AE2,即62+(8-x)2=x2,∴x=,∴CE=AE=cm.∴S阴影=·CE·AB=××6=(cm2).故答案为cm2.【方法点睛】本题目是一道关于勾股定理的运用问题,求阴影部分的面积,重点是求底边AE或者CE,解决途径是利用折叠的性质,对边平行的性质,得出△ACE是等腰三角形,进而根据AE和BE的数量关系,在Rt△ABE中利用勾股定理即可.14、x≥0且x≠1【分析】根据二次根式被开方数大于等于0,分式分母不等于0列式计算即可得解.【详解】解:由题意得,x≥0且x−1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15、AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,
∴BD-CD=CE-CD,
∴BC=DE,
①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).16、240°.【分析】三角形纸片中,剪去其中一个60°的角后变成四边形,则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【详解】解:根据三角形的内角和定理得:四边形除去∠1,∠2后的两角的度数为180°﹣60°=120°,则根据四边形的内角和定理得:∠1+∠2=360°﹣120°=240°.故答案为:240°.【点睛】本题考查多边形角度的计算,关键在于结合图形运用角度转换.17、a(x+1)1【解析】ax1+1ax+a=a(x1+1x+1)=a(x+1)1.18、乙和丙【分析】两边及其夹角分别对应相等的两个三角形全等,两角及其中一个角的对边对应相等的两个三角形全等.分别利用全等三角形的判定方法逐个判断即可.【详解】解:由SAS可知,图乙与△ABC全等,由AAS可知,图丙与△ABC全等,故答案为:乙和丙.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即、、、和.三、解答题(共66分)19、(1)见解析;(2)(ⅰ)BF=(2+)CF;理由见解析;(ⅱ)BP=.【分析】(1)先求出∠BAE+∠ABC=180°,再根据同旁内角互补两直线平行,即可证明AE∥BC.(2)(ⅰ)过点A作AH⊥BC于H,如图1所示,先证明△ABH、△BAF是等腰直角三角形,再根据等腰直角三角形的性质,求证BF=(2+)CF即可.(ⅱ)①当点F在点C的左侧时,作PG⊥AB于G,如图2所示,先通过三角形面积公式求出AF的长,再根据勾股定理求得BF、AC、BD的长,证明Rt△BPG≌Rt△BPF(HL),以此得到AD的长,设AP=x,则PG=PF=6﹣x,利用勾股定理求出AP的长,再利用勾股定理求出PD的长,通过BP=BD﹣PD即可求出线段BP的长.②当点F在点C的右侧时,则∠CAF=∠ACF',P’和F’分别对应图2中的P和F,如图3所示,根据等腰三角形的性质求得PD=P'D=,再根据①中的结论,可得BP=BP'+P'P=.【详解】(1)∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)①当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,则S△ABC=BC•AF=×10×AF=30,∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,∵S△ABC=AC•BD=×2×BD=30,∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD=,∴BP=BD﹣PD=;②当点F在点C的右侧时,P’和F’分别对应图2中的P和F,如图3所示,则∠CAF=∠CAF',∵BD⊥AC,∴∴∠APD=∠AP'D,∴△是等腰三角形∴AP=AP',PD=P'D=,∴BP=BP'+P'P=;综上所述,线段BP的长为或.【点睛】本题考查了三角形的综合问题,掌握同旁内角互补两直线平行、等腰直角三角形的性质以及判定、勾股定理、全等三角形的性质以及判定是解题的关键.20、(1)见解析;;(2)1.【分析】(1)分别找到点A、B、C的关于y轴的对称点A1、B1、C1,连接A1B1,A1C1,B1C1,即可画出,然后根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等,即可得出结论;(2)用一个长方形将△ABC框住,然后用长方形的面积减去三个直角三角形的面积即可得出结论.【详解】(1)根据题意,分别找到点A、B、C的关于y轴的对称点A1、B1、C1,连接A1B1,A1C1,B1C1,如图所示:即为所求.∵点A的坐标为(0,-2),点B的坐标为(2,-4),点C的坐标为(4,-1)∴;(2)用一个长方形将框住,如上图所示,∴的面积为:;【点睛】此题考查的是画关于y轴对称的图形、求关于y轴对称的点的坐标和求三角形的面积,掌握关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等和用一个长方形将△ABC框住,△ABC的面积等于长方形的面积减去三个直角三角形的面积是解决此题的关键.21、(1)y甲=0.6x+400;y乙=x;(2)见解析;(3)学校至少要付出印刷费1600元【解析】(1)直接根据题意列式即可;(2)分别找到两个函数与x轴y轴的交点坐标作两个函数的图象即可;(3)当x=2000时,分别求出y甲与y乙,就可得确定学校至少要付出印刷费的数额.【详解】解:(1)y甲=0.6x+400;y乙=x(2)如图所示:(3)当x=2000时y甲=0.6×2000+400=1600(元).y乙=2000(元).答:学校至少要付出印刷费1600元.【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.22、证明见解析.【分析】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,,所以得∠C=∠2,从而证得AB∥CD.【详解】证明:∵BE⊥FD,
∴∠EGD=90°,
∴∠1+∠D=90°,
∵∠2+∠D=90°,
∴∠1=∠2,
已知,
∴∠C=∠2,
∴AB∥CD.【点睛】本题考查的是平行线的判定,解题关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.23、是直角三角形.【分析】原等式的左边利用分组分解法分解因式即得a、b、c满足的关系式,然后利用勾股定理的逆定理进行判断即可.【详解】解:∵,∴,∴,∵a、b、c是△ABC的三边,∴,∴,即,∴∠C=90°,是直角三角形.【点睛】本题考查了多项式的因式分解和勾股定理的逆定理,属于常考题型,熟练掌握分解因式的方法和勾股定理的逆定理是解题关键.24、(1)y=x+1;(2)S=x+18(﹣8<x<0);(3)点P的坐标为(﹣5,)时,△OPA的面积是.【分析】(1)用待定系数法直接求出;
(2)先求出OA,表示出PD,根据三角形的面积公式,可得函数解析式;再根据P(x,y)在第二象限内的直线上,可得自变量的取值范围;
(3)利用(2)中得到的函数关系式直接代入S值,求出x即可.【详解】解:(1)设直线EF的解析式为y=kx+b,由题意得:解得,k=;∴直线EF的解析式为y=x+1.(2)如图,
作PD⊥x轴于点D,∵点P(x,y)是直线y=x+1上的一个动点,点A的坐标为(﹣1,0)∴OA=1,PD=x+1∴S=OA•PD=×1×(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师资格考试教学评价方式试题及答案
- 教育政策与教师发展的试题及答案
- 医学实验室质量控制知识试题及答案
- 武安事业编往年试题及答案
- 教师资格考试面试技巧试题及答案
- 人力资源管理中的风险评估及应对策略试题及答案
- 幼儿园语言试题及答案
- 护理文献检索试题及答案
- 教师资格笔试全景试题及答案
- 辽宁省大连市普兰店市第三中学2024-2025学年高三3月份模拟考试物理试题含解析
- (2025)发展对象培训班考试试题及答案
- 胸腔积液诊断与治疗
- 晨光医院救护车驾驶员考试题
- 《常用灭火器常识》课件
- 矿业权评估师岗前培训课件
- 二年级家庭教育讲座省公开课获奖课件市赛课比赛一等奖课件
- GB/T 24008-2024环境影响及相关环境因素的货币价值评估
- 黑龙江省哈尔滨市第四十七中学2024-2025学年九年级上学期期中英语试题含答案
- 2021年质量、环境和职业健康安全三体系相关方需求和期望分析表及组织环境分析报告
- 马克思主义民族理论与政策学习通超星期末考试答案章节答案2024年
- 研发管理咨询服务合同
评论
0/150
提交评论