2022年浙江省台州市三门县数学八年级第一学期期末经典试题含解析_第1页
2022年浙江省台州市三门县数学八年级第一学期期末经典试题含解析_第2页
2022年浙江省台州市三门县数学八年级第一学期期末经典试题含解析_第3页
2022年浙江省台州市三门县数学八年级第一学期期末经典试题含解析_第4页
2022年浙江省台州市三门县数学八年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知点,都在一次函数的图像上,则的大小关系是()A. B. C. D.不能确定2.在长为10cm,7cm,5cm,3cm的四根木条,选其中三根组成三角形,则能组成三角形的个数为()A.1 B.2 C.3 D.43.设是三角形的三边长,且满足,关于此三角形的形状有以下判断:①是直角三角形;②是等边三角形;③是锐角三角形;④是钝角三角形,其中正确的说法的个数有()A.1个 B.2个 C.3个 D.4个4.计算的结果,与下列哪一个式子相同?()A. B. C. D.5.施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A. B.C. D.6.下列代数式中,属于分式的是()A.-3 B. C. D.7.式子有意义,则实数a的取值范围是()A.a≥-1 B.a≠2 C.a≥-1且a≠2 D.a>28.如果分式在实数范围内有意义,则的取值范围是()A. B. C.全体实数 D.9.甲、乙、丙、丁四名设计运动员参加射击预选赛,他们射击成绩的平均数及方差如下表示:若要选出一个成绩较好状态稳定的运动员去参赛,那么应选运动员()甲乙丙丁899811A.甲 B.乙 C.丙 D.丁10.如图,,以点为圆心,小于的长为半径作圆弧,分别交于两点,再分别以为圆心,大于的长为半径作圆弧,两弧交于点,作射线交于点.若,则的度数为()A.150° B.140° C.130° D.120°二、填空题(每小题3分,共24分)11.如图,是的中线,是的中线,若,则_________.12.已知,则=________.13.小明用计算一组数据的方差,那么=____.14.若xy=3,则15.如果,则______.16.使分式有意义的x的取值范围是_____.17.等腰三角形ABC中,∠A=40°,则∠B的度数是___________.18.已知2x+3y﹣1=0,则9x•27y的值为______.三、解答题(共66分)19.(10分)一次函数的图像经过、两点.(1)求直线AB的函数表达式;(2)与直线AB交于点C,求点C的坐标.20.(6分)我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如(1),与都是等腰三角形,其中,则△ABD≌△ACE(SAS).(1)熟悉模型:如(2),已知与都是等腰三角形,AB=AC,AD=AE,且,求证:;(2)运用模型:如(3),为等边内一点,且,求的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以为边构造等边,这样就有两个等边三角形共顶点,然后连结,通过转化的思想求出了的度数,则的度数为度;(3)深化模型:如(4),在四边形中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求的长.21.(6分)如图:等边中,上,且,相交于点,连接.(1)证明.(2)若,证明是等腰三角形.22.(8分)(1)计算:;(2)化简求值:,其中,.23.(8分)已知:如图,四边形中,分别是的中点.求证:四边形是平行四边形.24.(8分)如图,平分交于,交于,.(1)求证:;(2).25.(10分)基本运算(1)分解因式:①②(2)整式化简求值:求[]÷的值,其中无意义,且.26.(10分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

参考答案一、选择题(每小题3分,共30分)1、A【分析】先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.【详解】∵一次函数中,k=-3<0,∴y随x的增大而减小,∵<4,∴y1>y1.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2、B【分析】根据任意两边之和大于第三边判断能否构成三角形.【详解】依题意,有以下四种可能:(1)选其中10cm,7cm,5cm三条线段符合三角形的成形条件,能组成三角形(2)选其中10cm,7cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(3)选其中10cm,5cm,3cm三条线段不符合三角形的成形条件,不能组成三角形(4)选其中7cm,5cm,3cm三条线段符合三角形的成形条件,能组成三角形综上,能组成三角形的个数为2个故选:B.【点睛】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.3、B【分析】先将原式转化为完全平方公式,再根据非负数的性质得出.进而判断即可.【详解】∵,

∴,

即,

∴,

∴此三角形为等边三角形,同时也是锐角三角形.

故选:B.【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键.4、D【分析】由多项式乘法运算法则:两多项式相乘时,用一个多项式的各项去乘另一个多项式的每一项,再把所得的积相加,合并同类项后所得的式子就是它们的积.【详解】解:由多项式乘法运算法则得.故选D.【点睛】本题考查多项式乘法运算法则,牢记法则,不要漏项是解答本题的关键.5、B【分析】设原计划每天铺设x米,则实际施工时每天铺设(x+50)米,根据:原计划所用时间-实际所用时间=2,列出方程即可.【详解】设原计划每天施工x米,则实际每天施工(x+50)米,

根据题意,可列方程:=2,

故选B.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是读懂题意,找出合适的等量关系,列出方程.6、C【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:-3;;是整式;符合分式的概念,是分式故选:C【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.7、C【分析】根据被开方数大于等于0,分母不等于0列式计算即可.【详解】解:由题意得,解得,a≥-1且a≠2,故答案为:C.【点睛】本题考查的知识点是根据分式有意义的条件确定字母的取值范围,属于基础题目,比较容易掌握.8、A【分析】根据分式有意义的条件即可求出答案.【详解】解:由题意可知:,,故选A.【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.9、B【分析】根据平均数及方差的定义和性质进行选择即可.【详解】由上图可知,甲、乙、丙、丁中乙、丙的平均数最大,为9∵∴乙的方差比丙的方差小∴选择乙更为合适故答案为:B.【点睛】本题考查了平均数和方差的问题,掌握平均数及方差的定义和性质是解题的关键.10、A【分析】利用基本作图得AH平分∠BAC,再利用平行线的性质得∠BAC=180°−∠C=60°,所以∠CAH=∠BAC=30°,然后根据三角形外角性质可计算出∠AHD的度数.【详解】解:由作法得AH平分∠BAC,则∠CAH=∠BAH,∵AB∥CD,∴∠BAC=180°−∠C=180°−120°=60°,∴∠CAH=∠BAC=30°,∴∠AHD=∠CAH+∠C=30°+120°=150°.故选:A.【点睛】本题考查了作图−基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.二、填空题(每小题3分,共24分)11、18cm2【分析】根据是的中线可先求到的值,再根据是的中线即可求到的值.【详解】解:是的中线,是的中线故答案为:.【点睛】本题考查的是中线的相关知识,中线将三角形的面积分为相等的两部分.12、【分析】根据幂的乘方与积的乘方运算法则解答即可.【详解】∵,,∴;故答案为:.【点睛】本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数的幂相除,底数不变,指数相减.13、1【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=1故答案为:1.【点睛】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.14、1【解析】根据比例的性质即可求解.【详解】∵xy=3,∴x=3y,∴原式=3y+yy故答案为:1.【点睛】本题考查了比例的性质,关键是得出x=3y.15、【分析】把分式方程变为整式方程,然后即可得到答案.【详解】解:∵,∴,∴,∴,∴;故答案为:.【点睛】本题考查了解分式方程,熟练把分式方程转化为整式方程是解题的关键.16、x≠﹣1.【分析】直接利用分式有意义则分母不为零进而得出答案.【详解】解:∵分式有意义,∴x+1≠0,故x≠﹣1.故答案为:x≠﹣1.【点睛】本题主要考查分式有意义的条件,掌握分式有意义的条件是解题的关键.17、40°或70°或100°【分析】等腰三角形△ABC可能有三种情况,①当∠A为顶角时,②当∠B为顶角,②当∠C为顶角时,根据各种情况求对应度数即可.【详解】根据题意,当∠A为顶角时,∠B=∠C=70°,当∠B为顶角时,∠A=∠C=40°,∠B=100°,当∠C为顶角时,∠A=∠B=40°,故∠B的度数可能是40°或70°或100°,故答案为:40°或70°或100°.【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理等知识点的理解和掌握.18、1【分析】直接利用幂的乘方运算法则将原式变形,进而利用同底数幂的乘法运算法则求出答案.【详解】解:∵2x+1y﹣1=0,∴2x+1y=1.

∴9x•27y=12x×11y=12x+1y=11=1.

故答案为:1.【点睛】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.三、解答题(共66分)19、(1);(2).【分析】(1)利用待定系数法即可求得;(2)联立两个函数,它们的交点的x和y值对应的就是C点的横、纵坐标.【详解】解:(1)将、分别代入得,,解得,即;(2)联立,解得,故C点的坐标为:.【点睛】本题考查求一次函数解析式,一次函数与二元一次方程组.理解一次函数交点与二元一次方程组的解之间的关系是解题关键.20、(1)见解析;(2)150°;(3)【分析】(1)根据“SAS”证明△ABD≌△ACE即可;(2)根据小明的构造方法,通过证明△BAP≌△BMC,可证∠BPA=∠BMC,AP=CM,根据勾股定理的逆定理得到∠PMC=90°,于是得到结论;(3)根据已知可得△ABC是等腰直角三角形,所以将△ADB绕点A逆时针旋转90°,得到△ACE,则BD=CE,证明△DCE是直角三角形,再利用勾股定理可求CE值.【详解】(1)∵,∴,在△ABD和△ACE中,∵,,AD=AE,∴△ABD≌△ACE,∴;(2)由小明的构造方法可得,BP=BM=PM,∠PBM=∠PMB=60°,∴∠ABP=∠CBM,又∵AB=BC,∴△BAP≌△BMC,∴∠BPA=∠BMC,AP=CM,∵,∴,设CM=3x,PM=4x,PC=5x,∵(5x)2=(3x)2+(4x)2,∴PC2=CM2+PM2,∴△PCM是直角三角形,∴∠PMC=90°,∴∠BPA=∠BMC=60°+90°=150°;(3)∵∠ACB=∠ABC=45°,∴∠BAC=90°,且AC=AB.将△ADB绕点A顺时针旋转90°,得到△ACE,∴AD=AE,∠DAE=90°,BD=CE.∴∠EDA=45°,DE=AD=4.∵∠ADC=45°,∴∠EDC=45°+45°=90°.在Rt△DCE中,利用勾股定理可得,CE=,∴BD=CE=.【点睛】本题综合考查了旋转的性质,等边三角形的性质,勾股定理及其逆定理,以及全等三角形的判定与性质等知识点.旋转变化前后,对应角、对应线段分别相等,图形的大小、形状都不变.21、(1)见解析;(2)见解析.【分析】(1)利用等边三角形的性质,采用SAS即可证明全等;(2)设∠ABP=∠CAD=,利用三角形的外角性质可推出,,即可得证.【详解】(1)∵△ABC为等边三角形∴∠BAE=∠ACD=60°,AB=CA在△ABE和△CAD中,∴(2)∵∴设∠ABP=∠CAD=,∴∵∴∴∵∴∴∴是等腰三角形.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,以及等腰三角形的判定,解题的关键是运用三角形的外角性质进行角度转换.22、(1)4;(2),4【分析】(1)利用负数的绝对值是正数,任何一个数的零指数幂等于1(0除外)以及二次根式和三次根式的运算即可求出答案;(2)利用多项式乘以多项式将括号里的展开后再合并同类项,最后利用多项式除以单项式化简,将具体的值代入即可.【详解】解:(1)原式;(2)原式.当,时原式.【点睛】本题主要考查的是实数的混合运算以及整式的乘除,掌握正确的运算方法是解题的关键.23、见解析.【分析】连接BD,利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【详解】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.【点睛】此题主要考查了中点四边形,关键是掌握平行四边形的判定和三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.24、(1)证明见解析;(2)证明见解析【分析】(1)证明△ABD≌△ACF即可得到结论;(2)由(1)得∠ABD=∠ACF,∠CDE=∠BDA,根据三角形内角和定理可得∠CED=∠BAD=90°,即BE⊥CF,结合BD平分∠ABC可证明BC=BF.【详解】(1)∵∠BAC=90°,∴∠CAF=90°,∴∠BAC=∠CAF,又∵AB=AC,AD=AF,∴△ABD≌△ACF,∴∠ABD=∠ACF;(2)在△CDE和△BDA中∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论