版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.某同学不小心把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是带③去,依据是()A.SSS B.SAS C.AAS D.ASA2.下列语句中,是命题的是()A.延长线段到 B.垂线段最短C.画 D.等角的余角相等吗?3.如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1 B. C.2 D.4.如图,若在象棋盘上建立直角坐标系,使“帅”位于点.“馬”位于点,则“兵”位于点()A. B.C. D.5.如图,,,下列结论错误的是()A. B.C. D.6.下列运算错误的是()A. B. C. D.7.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为()A.0.22×10﹣9 B.2.2×10﹣10 C.22×10﹣11 D.0.22×10﹣88.估算的值()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间9.在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,则AB=AD.其中,正确命题的个数有()A.1个 B.2个 C.3个 D.0个10.下列说法中正确的个数是()①若是完全平方式,则k=3②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质③在三角形内部到三边距离相等的点是三个内角平分线的交点④当时⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上,PD=PE,则点P在∠AOB的平分线上A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.若等腰三角形的两边长是2和5,则此等腰三角形的周长是__.12.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.13.观察下列等式:第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,…按上述规律,回答以下问题:(1)请写出第n个等式:an=__________.(2)a1+a2+a3+…+an=_________14.如图,在中,,,,以点为圆心,长为半径作弧,交于点,再分别以点和点为圆心,大于的长为半径作弧,两弧相交于点,作射线交于点,则的长为______.15.如图所示,在Rt△ABC中,∠A=30°,∠B=90°,AB=12,D是斜边AC的中点,P是AB上一动点,则PC+PD的最小值为_____.16.因式分解:________.17.如图1,将边长为a的大正方形剪去一个边长为b的小正方形(ab),将剩下的阴影部分沿图中的虚线剪开,拼接后得到图2,这种变化可以用含字母a,b的等式表示为_________________.18.把二次根式化成最简二次根式得到的结果是______.三、解答题(共66分)19.(10分)今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进型和型两种分类垃圾桶,购买型垃圾桶花费了2500元,购买型垃圾桶花费了2000元,且购买型垃圾桶数量是购买型垃圾桶数量的2倍,已知购买一个型垃圾桶比购买一个型垃圾桶多花30元.(1)求购买一个型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进型和型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,型垃圾桶售价比第一次购买时提高了8%,型垃圾桶按第一次购买时售价的9折出售,如果此次购买型和型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个型垃圾桶?20.(6分)已知:如图①,是等边三角形,是边上一点,平行交于点.(1)求证:是等边三角形(2)连接,延长至点,使得,如图②.求证:.21.(6分)如图,在每个小正方形的边长均为1的方格纸中有线段AB,其中点A、B均在小正方形的顶点上.(1)在方格纸中画出以BC为底的钝角等腰三角形ABC,且点C在小正方形的顶点上;(2)将(1)中的△ABC绕点C逆时针旋转90°得到△DEC(点A的对应点是点D,点B的对应点是点E),画出△CDE;(3)在(2)的条件下,连接BE,请直接写出△BCE的面积.22.(8分)如图,是等边三角形,为上两点,且,延长至点,使,连接.(1)如图1,当两点重合时,求证:;(2)延长与交于点.①如图2,求证:;②如图3,连接,若,则的面积为______________.23.(8分)已知在一个多边形中,除去一个内角外,其余内角和的度数是1125°,求这个多边形的边数.24.(8分)如图,已知点和点在线段上,且,点和点在的同侧,,,和相交于点.(1)求证:;(2)当,猜想的形状,并说明理由.25.(10分)解分式方程:.26.(10分)如图,一次函数y=kx+b的图象经过点A(﹣2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=S△BOC,求点D的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据全等三角形的判定方法即可进行判断.【详解】解:③保留了原三角形的两角和它们的夹边,根据三角形全等的判定方法ASA可配一块完全一样的玻璃,而①仅保留了一个角和部分边,②仅保留了部分边,均不能配一块与原来完全一样的玻璃.故选D.【点睛】本题考查的是全等三角形的判定,难度不大,掌握三角形全等的判定方法是解题的关键.2、B【分析】根据命题的定义解答即可.【详解】解:A、延长线段AB到C,不是命题;
B、垂线段最短,是命题;
C、画,不是命题;
D、等角的余角相等吗?不是命题;
故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句叫命题.3、C【分析】根据角平分线的定义可得∠AOP=∠AOB=30°,再根据直角三角形的性质求得PD=OP=1,然后根据角平分线的性质和垂线段最短得到结果.【详解】∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∵PD⊥OA,M是OP的中点,DM=1,∴OP=1DM=4,∴PD=OP=1,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=1.故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.4、C【解析】试题解析:如图,“兵”位于点(−3,1).故选C.5、D【分析】根据全等三角形的判定及性质逐一判断即可.【详解】解:在△ABE和△ACD中∴△ABE≌△ACD,故A选项正确;∴∠B=∠C,故C选项正确;∵,∴AB-AD=AC-AE∴,故B选项正确;无法证明,故D选项错误.故选D.【点睛】此题考查的是全等三角形的判定及性质,掌握全等三角形的判定定理和性质定理是解决此题的关键.6、A【分析】根据同类二次根式的合并,二次根式的乘除法则,分别进行各选项的判断即可.【详解】解:A、与不是同类二次根式,不能直接合并,故本选项正确;B、×=,计算正确,故本选项错误;C、÷=,计算正确,故本选项错误;D、(-)2=2,计算正确,故本选项错误;故选A.【点睛】本题考查了二次根式的加减及乘除运算,解答本题的关键是掌握二次根式的加减及乘除法则.7、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.表示时关键要正确确定a的值以及n的值.8、C【分析】应先找到所求的无理数在哪两个和它接近的数之间,然后判断出所求的无理数的范围,由此即可求解.【详解】解:∵∴,,∴,即,∴的值在3和4之间.故选:C.【点睛】本题主要考查无理数的估算,掌握无理数的估算方法是解题的关键.9、B【分析】在△ABC和△ADC中,有公共边AC,所以挑两个条件,看这两个三角形是否全等,再得出结论.【详解】∵AB=AD,∠BAC=∠DAC,AC=AC,∴△ABC≌△ADC,∴BC=DC,故(1)正确;∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,故(2)正确;由CB=CD,∠BAC=∠DAC,AC=AC,不能证明△ABC≌△ADC,故(3)不正确.故选B.【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.10、C【分析】根据完全平方公式、三角形的稳定性、内心的性质、零指数幂的运算及角平分线的判定定理即可求解.【详解】①若是完全平方式,则k=±3,故错误;②工程建筑中经常采用三角形的结构,这是利用三角形具有稳定性的性质,正确;③在三角形内部到三边距离相等的点是三个内角平分线的交点,正确;④当时,正确;⑤若点P在∠AOB内部,D,E分别在∠AOB的两条边上,PD=PE,点P不一定在∠AOB的平分线上,故错误;故选C.【点睛】此题主要考查完全平方公式、三角形的稳定性、内心的性质、零指数幂的运算及角平分线的判定定理,解题的关键是熟知其特点及性质.二、填空题(每小题3分,共24分)11、1.【分析】根据等腰三角形的性质分腰长为2和腰长为5两种情况讨论,选择能构成三角形的求值即可.【详解】解:①腰长为2,底边长为5,2+2=4<5,不能构成三角形,故舍去;②腰长为5,底边长为2,则周长=5+5+2=1.故其周长为1.故答案为:1.【点睛】本题考查了等腰三角形,已知两边长求周长,结合等腰三角形的性质,灵活的进行分类讨论是解题的关键.12、.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=,∠D′DA+∠ADC=90°由勾股定理得CD′=∴BD=CD′=,故答案为.13、【分析】(1)由题意,找出规律,即可得到答案;(2)由题意,通过拆项合并,然后进行计算,即可得到答案.【详解】解:∵第1个等式:a1=,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=,……∴第n个等式:;故答案为:;(2)==;故答案为:.【点睛】本题考查了二次根式的加减混合运算,以及数字规律问题,解题的关键是掌握题目中的规律,从而进行解题14、4.1【分析】根据勾股定理计算出AB的长,再由作图可知CE垂直平分BD,然后利用等面积法计算CF即可.【详解】连接CD、DE、BE,由题可知,BC=DC,DE=BE,∴CE垂直平分BD,∵在Rt△ABC中,AC=1,BC=6,∴AB=,∵S△ABC=AC•BC=AB•CF,∴×1×6=×10•CF,∴CF=4.1.故答案为:4.1.【点睛】本题考查垂直平分线的判定,勾股定理,明确垂直平分线判定定理及勾股定理,掌握等面积法是解题关键.15、12【分析】作C关于AB的对称点E,连接ED,易求∠ACE=60°,则AC=AE,且△ACE为等边三角形,CP+PD=DP+PE为E与直线AC之间的连接线段,其最小值为E到AC的距离=AB=12,所以最小值为12.【详解】作C关于AB的对称点E,连接ED,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AE,∴△ACE为等边三角形,∴CP+PD=DP+PE为E与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=12,故答案为12【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.16、【分析】用完全平方公式进行因式分解即可.【详解】解:=故答案为:【点睛】本题考查完全平方公式进行因式分解,掌握公式结构是解题关键.17、【解析】图(1)中阴影部分的面积等于两个正方形的面积之差,即为a2−b2;图(2)中阴影部分为梯形,其上底为2b,下底为2a,高为(a-b)则其面积为(a+b)(a−b),∵前后两个图形中阴影部分的面积,∴.故答案为.18、3【分析】根据二次根式的性质进行化简即可.【详解】解:==3.故答案为:3.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.三、解答题(共66分)19、(1)购买一个型垃圾桶、型垃圾桶分别需要50元和80元;(2)此次最多可购买1个型垃圾桶.【分析】(1)设一个A型垃圾桶需x元,则一个B型垃圾桶需(x+1)元,根据购买A型垃圾桶数量是购买B品牌足球数量的2倍列出方程解答即可;
(2)设此次可购买a个B型垃圾桶,则购进A型垃圾桶(50-a)个,根据购买A、B两种垃圾桶的总费用不超过3240元,列出不等式解决问题.【详解】(1)设购买一个型垃圾桶需元,则购买一个型垃圾桶需元.由题意得:.解得:.经检验是原分式方程的解.∴.答:购买一个型垃圾桶、型垃圾桶分别需要50元和80元.(2)设此次购买个型垃圾桶,则购进型垃圾桶个,由题意得:.解得.∵是整数,∴最大为1.答:此次最多可购买1个型垃圾桶.【点睛】本题考查一元一次不等式与分式方程的应用,正确找出等量关系与不等关系是解决问题的关键.20、(1)见解析;(2)见解析;【分析】(1)根据等边三角形的性质可得∠A=∠B=∠C=60°,然后利用平行线的性质可得∠CDE=∠A=60°,∠CED=∠B=60°,从而得出∠CDE=∠CED=∠C,然后根据等边三角形的判定即可证出结论;(2)先证出∠DEB=∠DCF,根据等边对等角证出∠DBE=∠DFC,然后利用AAS即可证出△DBE≌△DFC,从而得出BE=CF,然后根据等边三角形的性质和等式的基本性质证出AD=BE,从而证出结论;【详解】证明:(1)∵是等边三角形∴∠A=∠B=∠C=60°∵DE∥AB∴∠CDE=∠A=60°,∠CED=∠B=60°∴∠CDE=∠CED=∠C∴是等边三角形.(2)∵∠DEC=∠DCE∴∠DEB=180°-∠DEC=180°-∠DCE=∠DCF∵DB=DF∴∠DBE=∠DFC在△DBE和△DFC中∴△DBE≌△DFC∴BE=CF∵和是等边三角形∴AC=BC,DC=EC∴AC-DC=BC-EC∴AD=BE∴【点睛】此题考查的是等边三角形的判定及性质、等腰三角形的性质和全等三角形的判定及性质,掌握等边三角形的判定及性质、等边对等角和全等三角形的判定及性质是解决此题的关键.21、(1)详见解析;(2)详见解析;(3)1【分析】(1)依据BC为等腰三角形的底边,AB的长为5,即可得到点C的位置,进而得出钝角等腰三角形ABC;
(2)依据△ABC绕点C逆时针旋转90°,即可得到△DEC;
(3)连接BE,运用割补法即可得出△BCE的面积.【详解】(1)如图所示,等腰三角形ABC即为所求;
(2)如图所示,△DEC即为所求;
(3)如图,连接BE,△BCE的面积为8×12-×4×8×2-×4×12=96-32-24=1.【点睛】此题考查作图-旋转,等腰三角形的性质,解题关键在于根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22、(1)见解析;(1)①见解析;②1.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(1)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=110°,BH=EC,于是可根据SAS证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴,∵,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴;(1)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=110°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE=60°,∠EBD=30°,∴∠BEG=90°,∵EB=EF,∴∠F=∠EBF=45°,∵∠EBG=30°,BG=4,∴EG=1,BE=1,∴BF=,,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,∴,∵∠ACB=60°,∴∠MEC=30°,∴,∴,,∴,∴,∴,∴∠GCF=90°=∠GCB,∴,∴△BCG的面积=.故答案为:1.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 万能补充协议
- 足底发麻病因介绍
- (2024)高速吹膜机项目可行性研究报告备案申请模板(一)
- 云南省曲靖市沾益区2024-2025学年七年级9月月考道德与法治试题(原卷版)-A4
- 2024秋新沪科版物理8年级上册教学课件 第6章 熟悉而陌生的力 第4节 探究:滑动摩擦力大小与哪里因素有关
- 2023年智能电能表及配件项目融资计划书
- 2023年原料药机械及设备项目融资计划书
- 《OJT推进与实施》课件
- 《珠心算基本功训练》课件
- 湖北省黄石市大冶市2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 护理质控分析整改措施(共5篇)
- 金属矿山安全教育课件
- 托盘演示教学课件
- 中华农耕文化及现实意义
- DBJ61-T 112-2021 高延性混凝土应用技术规程-(高清版)
- 2023年高考数学求定义域专题练习(附答案)
- 农产品品牌与营销课件
- 苏科版一年级心理健康教育第17节《生命更美好》教案(定稿)
- 车辆二级维护检测单参考模板范本
- 测定总固体原始记录
- (最新整理)夜市一条街建设方案
评论
0/150
提交评论