![异面直线所成的角的求法_第1页](http://file4.renrendoc.com/view/5d09e36846238a57c26650f1dc73605b/5d09e36846238a57c26650f1dc73605b1.gif)
![异面直线所成的角的求法_第2页](http://file4.renrendoc.com/view/5d09e36846238a57c26650f1dc73605b/5d09e36846238a57c26650f1dc73605b2.gif)
![异面直线所成的角的求法_第3页](http://file4.renrendoc.com/view/5d09e36846238a57c26650f1dc73605b/5d09e36846238a57c26650f1dc73605b3.gif)
![异面直线所成的角的求法_第4页](http://file4.renrendoc.com/view/5d09e36846238a57c26650f1dc73605b/5d09e36846238a57c26650f1dc73605b4.gif)
![异面直线所成的角的求法_第5页](http://file4.renrendoc.com/view/5d09e36846238a57c26650f1dc73605b/5d09e36846238a57c26650f1dc73605b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
关于异面直线所成的角的求法第一页,共四十二页,2022年,8月28日问题一:异面直线的判定第二页,共四十二页,2022年,8月28日例1.已知m、n为异面直线,m⊂平面α,n⊂平面β,α∩β=l,则l(
)A.与m、n都相交B.与m、n中至少一条相交C.与m、n都不相交D.与m、n中的一条直线相交第三页,共四十二页,2022年,8月28日例2.已知点P、Q、R、S分别是正方体的四条棱的中点,则直线PQ与RS是异面直线的一个图是 (
)第四页,共四十二页,2022年,8月28日例3.如图,已知α∩β=a,b⊂α,c⊂β,b∩a=A,c∥a,求证:b与c是异面直线.第五页,共四十二页,2022年,8月28日[证明]
假设b与c不是异面直线,则b∥c或b与c相交.(1)若b∥c,∵a∥c,∴a∥b与a∩b=A矛盾.(2)若b与c相交,设b∩c=B,∵a∥c,∴B∉a,即A、B两点不重合,这样直线b上有两点A、B∈β,∴b⊂β,又b⊂α,∴b是α与β的公共直线,又α∩β=a,∴b与a重合,这与b∩a=A矛盾,∴b与c是异面直线.第六页,共四十二页,2022年,8月28日异面直线的证明:(1)反证法,假设两直线共面,随后导出矛盾,故两直线异面.(2)过平面外一点与平面内一点的直线和平面内不过该点的直线是异面直线(异面直线判定定理).第七页,共四十二页,2022年,8月28日问题二:求异面直线所成的角第八页,共四十二页,2022年,8月28日预备知识角的知识正弦定理a=2RsinAa=2RsinASABC=bcsinA余弦定理ABCbcacosA=ABCbca第九页,共四十二页,2022年,8月28日二、数学思想、方法、步骤:解决空间角的问题涉及的数学思想主要是化归与转化,即把空间的角转化为平面的角,进而转化为三角形的内角,然后通过解三角形求得。2.方法:3.步骤:求异面直线所成的角:①作(找)②证③点④算1.数学思想:平移构造可解三角形第十页,共四十二页,2022年,8月28日例4.在正方体ABCD-A1B1C1D1中,棱长为4(1)求直线BA1和CC1所成的角的大小(2)若M,N分别为棱A1B1和B1B的中点,求直线AM与CN所成的角的余弦值.A1B1C1D1ABCDMNPQBQ=1BN=2QN=QC=NC=Cos∠QNC=第十一页,共四十二页,2022年,8月28日
例
5、在正方体ABCD-A’B’C’D’中,棱长为a,E、F分别是棱A’B’,B’C’的中点,求:①异面直线AD与EF所成角的大小;②异面直线B’C与EF所成角的大小;③异面直线B’D与EF所成角的大小.第十二页,共四十二页,2022年,8月28日②异面直线B’C与EF所成角的大小;第十三页,共四十二页,2022年,8月28日OGAC∥A’C’∥EF,OG∥B’DB’D与EF所成的角即为AC与OG所成的角,即为∠AOG或其补角.平移法补形法第十四页,共四十二页,2022年,8月28日例6空间四边形SABC中,SA=SB=SC=AB=BC=CA,E、F分别是SA、BC中点,则异面直线EF与SC所成的角900第十五页,共四十二页,2022年,8月28日S是正△ABC所在平面外一点,SA=SB=SC且∠ASB=∠BSC=∠CSA=90°,M,N分别是AB和SC的中点,求异面直线SM与BN所成的角。ASBCMNPMABCPNPBaaa例7.第十六页,共四十二页,2022年,8月28日三例8.第十七页,共四十二页,2022年,8月28日第十八页,共四十二页,2022年,8月28日第十九页,共四十二页,2022年,8月28日例9.如图,在正三角形ABC中,D、E、F分别为各边的中点,G、H、I、J分别为AF、AD、BE、DE的中点,将△ABC沿DE、EF、DF折成三棱锥以后,GH与IJ所成角的度数为________第二十页,共四十二页,2022年,8月28日[解析]
折起后,空间图形如图.A、B、C三点重合为一点A′,在△BDE中,IJ∥BD,在△ADF中,GH∥DF,∴折起后,IJ∥A′D,∴直线DF与A′D所成的角就是HG与IJ所成的角,在正△A′DF中,∠A′DF=60°.第二十一页,共四十二页,2022年,8月28日
例、10
由四个全等的等边三角形围成的封闭几何体称为正四面体.如图,正四面体ABCD中,E、F分别是棱BC、AD的中点,CF与DE是一对异面直线,在图形中适当的选取一点作出异面直线CF、DE的平行线,找出异面直线CF与DE所成的角.第二十二页,共四十二页,2022年,8月28日[解析]
思路1:选取平面ACD,该平面有以下两个特点:①该平面包含直线CF,②该平面与DE相交于点D,伸展平面ACD,在该平面中,过点D作DM∥CF交AC的延长线于M,连结EM.可以看出:DE与DM所成的角,即为异面直线DE与CF所成的角.如图1.第二十三页,共四十二页,2022年,8月28日思路2:选取平面BCF,该平面有以下两个特点:①该平面包含直线CF,②该平面与DE相交于点E.在平面BCF中,过点E作CF的平行线交BF于点N,连结ND,可以看出:EN与ED所成的角,即为异面直线FC与ED所成的角.如图2.思路3:选取平面ADE,该平面有如下两个特点:①该平面包含直线DE,②该平面与CF相交于点F.在平面ADE中,过点F作FG∥DE,与AE相交于点G,连结CG,可以看出:FG与FC所成的角,即为异面直线CF与DE所成的角.如图3.第二十四页,共四十二页,2022年,8月28日第二十五页,共四十二页,2022年,8月28日思路4:选取平面BCD,该平面有如下特点:①该平面包含直线DE,②该平面与CF相交于点C,伸展平面BCD,在该平面内过点C作CK∥DE与BD的延长线交于点K,且DK=BD,连结FK,则CF与CK所成的角,即为异面直线CF与DE所成的角.如图4.第二十六页,共四十二页,2022年,8月28日总结评述:(1)上面四个思路的共同点是:由两条异面直线中的一条与另一条上一个点确定一个平面,在该平面内过该点作该直线的平行线,从而找出两条异面直线所成的角,这是立体几何“化异为共”“降维”的基本思想.第二十七页,共四十二页,2022年,8月28日(2)求两条异面直线所成角的关键是作出这两条异面直线所成的角,作两条异面直线所成的角的方法是:将其中一条平移到某个位置使其与另一条相交或是将两条异面直线同时平移到某个位置使它们相交,然后在同一平面内求相交直线所成的角.值得注意的是:平移后相交所得的角必须容易算出,因此平移时要求选择恰当位置.一般提倡像思路2、思路3那样作角,因为此角在几何体内部,易求.第二十八页,共四十二页,2022年,8月28日(3)找出异面直线所成的角后求角的大小.一般要归到一个三角形中,通过解三角形求出角的大小,如本题思路1中可归结为解△DEM.思路2中可归结为解△DEN等等,由于本例中三角形是斜三角形,待我们学过解斜三角形后,即可计算.(4)实际问题中,若含有“中点”“比例点”常利用中位线,比例线段进行平移.第二十九页,共四十二页,2022年,8月28日10.A为正三角形BCD所在平面外一点,且AB=AC=AD=BC=a,E、F分别是棱AD、BC的中点,连结AF、CE,如图所示,求异面直线AF、CE所成角的余弦值。
ABCDEFG解:连结DF,取DF的中点G,连结EG,CG,又E是AD的中点,故EG//AF,所以∠GEC(或其补角)是异面直线AF、CE所成的角。∴异面直线AF、CE所成角的余弦值是
第三十页,共四十二页,2022年,8月28日11.A为正三角形BCD所在平面外一点,且AB=AC=AD=BC=a,E、F分别是棱AD、BC的中点,连结AF、CE,如图所示,求异面直线AF、CE所成角的余弦值。
ABCDEFP另解:延长DC至P,使DC=CP,E为AD中点,∴AP//EC。
故∠PAF(或其补角)为异面直线AF、CE所成的角。
∴异面直线AF、CE所成角的余弦值是
第三十一页,共四十二页,2022年,8月28日练习1:如图,P为ΔABC所在平面外一点,PC⊥AB,PC=AB=2,E、F分别为PA和BC的中点。
(1)求证:EF与PC为异面直线;(2)求EF与PC所成的角;(3)求线段EF的长。ABCPEF假设EF与PC不是异面直线,则EF与PC共面由题意可知其平面为PBC这与已知P为ΔABC所在平面外一点矛盾第三十二页,共四十二页,2022年,8月28日PABCMN12、空间四边形P-ABC中,M,N分别是PB,AC的中点,PA=BC=4,MN=3,求PA与BC所成的角?E第三十三页,共四十二页,2022年,8月28日ADCBA1D1C1B1变题:已知正方体ABCD-A1B1C1D1中,棱长为a.O为底面中心,F为DD1中点E在A1B1上,求AF与OE所成的角OEFN第三十四页,共四十二页,2022年,8月28日ADCBA1D1C1B12、若M为A1B1的中点,N为BB1的中点,求异面直线AM与CN所成的角;NMFE第三十五页,共四十二页,2022年,8月28日例14、如图,在三棱锥D-ABC中,
DA⊥平面ABC,∠ACB=90°,∠ABD=30°,AC=BC,求异面直线AB与CD所成的角的余弦值。ABCD第三十六页,共四十二页,2022年,8月28日四面体A—BCD的棱长均为a,E,F分别为棱BC,AD的中点,
(1)求异面直线CF和BD所成的角的余弦值。
(2)求CF与DE所成的角。思考题ABCDEFPQ第三十七页,共四十二页,2022年,8月28日异面直线所成的角的求法:
典例剖析例1:如图正方体AC1,①求异面直线AB1和CC1所成角的大小②求异面直线AB1和A1D所成角的大小
D1D1CB1A1ADD1BC1〖分析〗1、做异面直线的平行线
2、说明哪个角就是所求角
3、把角放到平面图形中求解
解:①∵CC1//BB1∴AB1和BB1所成的锐角是异面直线AB1和CC1所成的角
∵在△ABB1中,AB1和BB1所成的角是450∴异面直线AB1和CC1所成的角是450。第三十八页,共四十二页,2022年,8月28日异面直线所成的角的求法:
典例剖析例1:如图正方体AC1,①求异面直线AB1和CC1所成角的大小②求异面直线AB1和A1D所成角的大小
D1D1CB1A1ADD1BC1〖分析〗1、做异面直线的平行线
2、说明哪个角就是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学信息技术三年级下册第七单元《第3课 开展在线协作学习》教学设计
- 沪教版高中信息技术必修 第一章第2节 2.2信息技术的发展 教学设计
- 快递驿站场地使用协议
- 边坡框架立柱基础施工方案
- 第1课 走进人工智能 教学设计- 2023-2024学年浙教版(2023)初中信息技术八年级下册
- 晋城小型喷淋塔施工方案
- 红岩村大桥桩基施工方案
- 福建网上展厅施工方案
- 沪科版 信息技术 必修 3.1.5声音信息的加工 教学设计
- 三 意外受伤的原因(教学设计)粤教版三年级下册综合实践活动
- 2024专利代理人考试真题及答案
- JJF 2163-2024漆膜划格器校准规范
- 2024年高考全国甲卷英语试卷(含答案)
- 2025年高考数学模拟卷(一)含答案及解析
- 电子技术基础课件第6章数字电路基础
- 大单元教学理念及其定义、特点与实施策略
- 国有企业职业经理人绩效考核制度
- 屋顶分布式光伏发电项目光伏组件技术要求
- GB/T 44510-2024新能源汽车维修维护技术要求
- 中智集团招聘笔试题库2024
- 三晋卓越联盟·山西省2024-2025学年度高三9月质量检测+语文试卷
评论
0/150
提交评论