




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Abaqus固有频率提取6.3.5
Naturalfrequencyextraction
Products:
Abaqus/Standard
Abaqus/CAE
Abaqus/AMS
References“Procedures:overview,”
Section6.1.1“Generalandlinearperturbationprocedures,”
Section6.1.2“Dynamicanalysisprocedures:overview,”
Section6.3.1\t"v610keywin"*FREQUENCY\t"v610usiwin"“Configuringafrequencyprocedure”in“Configuringlinearperturbationanalysisprocedures,”
Section14.11.2oftheAbaqus/CAEUser'sManualOverview
Thefrequencyextractionprocedure:performseigenvalueextractiontocalculatethenaturalfrequenciesandthecorrespondingmodeshapesofasystem;willincludeinitialstressandloadstiffnesseffectsduetopreloadsandinitialconditionsifgeometricnonlinearityisaccountedforinthebasestate,sothatsmallvibrationsofapreloadedstructurecanbemodeled;willcomputeresidualmodesifrequested;isalinearperturbationprocedure;canbeperformedusingthetraditionalAbaqussoftwarearchitectureor,ifappropriate,thehigh-performanceSIMarchitecture(see
“UsingtheSIMarchitectureformodalsuperpositiondynamicanalyses”in“Dynamicanalysisprocedures:overview,”
Section6.3.1);andsolvestheeigenfrequencyproblemonlyforsymmetricmassandstiffnessmatrices;thecomplexeigenfrequencysolvermustbeusedifunsymmetriccontributions,suchastheloadstiffness,areneeded.
Eigenvalueextraction
Theeigenvalueproblemforthenaturalfrequenciesofanundampedfiniteelementmodelis
whereisthemassmatrix(whichissymmetricandpositivedefinite);
isthestiffnessmatrix(whichincludesinitialstiffnesseffectsifthebasestateincludedtheeffectsofnonlineargeometry);
istheeigenvector(themodeofvibration);and
M
and
Naredegreesoffreedom.
When
ispositivedefinite,alleigenvaluesarepositive.Rigidbodymodesandinstabilitiescause
tobeindefinite.Rigidbodymodesproducezeroeigenvalues.Instabilitiesproducenegativeeigenvaluesandoccurwhenyouincludeinitialstresseffects.Abaqus/Standardsolvestheeigenfrequencyproblemonlyforsymmetricmatrices.
Selectingtheeigenvalueextractionmethod
Abaqus/Standardprovidesthreeeigenvalueextractionmethods:LanczosAutomaticmulti-levelsubstructuring(AMS),anadd-onanalysiscapabilityforAbaqus/StandardSubspaceiteration
Inaddition,youmustconsiderthesoftwarearchitecturethatwillbeusedforthesubsequentmodalsuperpositionprocedures.Thechoiceofarchitecturehasminimalimpactonthefrequencyextractionprocedure,buttheSIMarchitecturecanoffersignificantperformanceimprovementsoverthetraditionalarchitectureforsubsequentmode-basedsteady-stateortransientdynamicprocedures(see
“UsingtheSIMarchitectureformodalsuperpositiondynamicanalyses”in“Dynamicanalysisprocedures:overview,”
Section6.3.1).Thearchitecturethatyouuseforthefrequencyextractionprocedureisusedforallsubsequentmode-basedlineardynamicprocedures;youcannotswitcharchitecturesduringananalysis.Thesoftwarearchitecturesusedbythedifferenteigensolversareoutlinedin
Table6.3.5–1.Table6.3.5–1
Softwarearchitecturesavailablewithdifferenteigensolvers.SoftwareArchitectureEigensolverLanczosAMSSubspaceIterationTraditional
SIM
TheLanczossolverwiththetraditionalarchitectureisthedefaulteigenvalueextractionmethodbecauseithasthemostgeneralcapabilities.However,theLanczosmethodisgenerallyslowerthantheAMSmethod.TheincreasedspeedoftheAMSeigensolverisparticularlyevidentwhenyourequirealargenumberofeigenmodesforasystemwithmanydegreesoffreedom.However,theAMSmethodhasthefollowinglimitations:AllrestrictionsimposedonSIM-basedlineardynamicproceduresalsoapplytomode-basedlineardynamicanalysesbasedonmodeshapescomputedbytheAMSeigensolver.See
“UsingtheSIMarchitectureformodalsuperpositiondynamicanalyses”in“Dynamicanalysisprocedures:overview,”
Section6.3.1,fordetails.TheAMSeigensolverdoesnotcomputecompositemodaldampingfactors,participationfactors,ormodaleffectivemasses.However,ifparticipationfactorsareneededforprimarybasemotions,theywillbecomputedbutarenotwrittentotheprinteddata(.dat)file.YoucannotusetheAMSeigensolverinananalysisthatcontainspiezoelectricelements.Youcannotrequestoutputtotheresults(.fil)fileinanAMSfrequencyextractionstep.Ifyourmodelhasmanydegreesoffreedomandtheselimitationsareacceptable,youshouldusetheAMSeigensolver.Otherwise,youshouldusetheLanczoseigensolver.TheLanczoseigensolverandthesubspaceiterationmethodaredescribedin\t"v610stmwin"“Eigenvalueextraction,”
Section2.5.1oftheAbaqusTheoryManual.
LanczoseigensolverFortheLanczosmethodyouneedtoprovidethemaximumfrequencyofinterestorthenumberofeigenvaluesrequired;Abaqus/Standardwilldetermineasuitableblocksize(althoughyoucanoverridethischoice,ifneeded).Ifyouspecifyboththemaximumfrequencyofinterestandthenumberofeigenvaluesrequiredandtheactualnumberofeigenvaluesisunderestimated,Abaqus/Standardwillissueacorrespondingwarningmessage;theremainingeigenmodescanbefoundbyrestartingthefrequencyextraction.Youcanalsospecifytheminimumfrequenciesofinterest;Abaqus/Standardwillextracteigenvaluesuntileithertherequestednumberofeigenvalueshasbeenextractedinthegivenrangeorallthefrequenciesinthegivenrangehavebeenextracted.See
“UsingtheSIMarchitectureformodalsuperpositiondynamicanalyses”in“Dynamicanalysisprocedures:overview,”
Section6.3.1,forinformationonusingtheSIMarchitecturewiththeLanczoseigensolver.Input
File
Usage:
\t"v610keywin"*FREQUENCY,EIGENSOLVER=LANCZOSAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:
LanczosChoosingablocksizefortheLanczosmethodIngeneral,theblocksizefortheLanczosmethodshouldbeaslargeasthelargestexpectedmultiplicityofeigenvalues(thatis,thelargestnumberofmodeswiththesamefrequency).Ablocksizelargerthan10isnotrecommended.Ifthenumberofeigenvaluesrequestedis
n,thedefaultblocksizeistheminimumof(7,
n).Thechoiceof7forblocksizeprovestobeefficientforproblemswithrigidbodymodes.ThenumberofblockLanczosstepswithineachLanczosrunisusuallydeterminedbyAbaqus/Standardbutcanbechangedbyyou.Ingeneral,ifaparticulartypeofeigenproblemconvergesslowly,providingmoreblockLanczosstepswillreducetheanalysiscost.Ontheotherhand,ifyouknowthataparticulartypeofproblemconvergesquickly,providingfewerblockLanczosstepswillreducetheamountofin-corememoryused.ThedefaultvaluesareBlocksizeMaximumnumberofblockLanczossteps180250345≥435
Automaticmulti-levelsubstructuring(AMS)eigensolverFortheAMSmethodyouneedonlyspecifythemaximumfrequencyofinterest(theglobalfrequency),andAbaqus/Standardwillextractallthemodesuptothisfrequency.Youcanalsospecifytheminimumfrequenciesofinterestand/orthenumberofrequestedmodes.However,specifyingthesevalueswillnotaffectthenumberofmodesextractedbytheeigensolver;itwillaffectonlythenumberofmodesthatarestoredforoutputorforasubsequentmodalanalysis.TheexecutionoftheAMSeigensolvercanbecontrolledbyspecifyingthreeparameters:
,
,and
.Thesethreeparametersmultipliedbythemaximumfrequencyofinterestdefinethreecut-offfrequencies.
(defaultvalueof5)controlsthecutofffrequencyforsubstructureeigenproblemsinthereductionphase,while
and
(defaultvaluesof1.7and1.1,respectively)controlthecutofffrequenciesusedtodefineastartingsubspaceinthereducedeigensolutionphase.Generally,increasingthevalueof
and
improvestheaccuracyoftheresultsbutmayaffecttheperformanceoftheanalysis.RequestingeigenvectorsatallnodesBydefault,theAMSeigensolvercomputeseigenvectorsateverynodeofthemodel.Input
File
Usage:
\t"v610keywin"*FREQUENCY,EIGENSOLVER=AMSAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:
AMSRequestingeigenvectorsonlyatspecifiednodesAlternatively,youcanspecifyanodeset,andeigenvectorswillbecomputedandstoredonlyatthenodesthatbelongtothatnodeset.Thenodesetthatyouspecifymustincludeallnodesatwhichloadsareappliedoroutputisrequestedinanysubsequentmodalanalysis(thisincludesanyrestartedanalysis).Ifelementoutputisrequestedorelement-basedloadingisapplied,thenodesattachedtotheassociatedelementsmustalsobeincludedinthisnodeset.Computingeigenvectorsatonlyselectednodesimprovesperformanceandreducestheamountofstoreddata.Therefore,itisrecommendedthatyouusethisoptionforlargeproblems.Input
File
Usage:
\t"v610keywin"*FREQUENCY,EIGENSOLVER=AMS,NSET=nameAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:
AMS:
LimitregionofsavedeigenvectorsControllingtheAMSeigensolverTheAMSmethodconsistsofthefollowingthreephases:Reductionphase:
InthisphaseAbaqus/Standardusesamulti-levelsubstructuringtechniquetoreducethefullsysteminawaythatallowsaveryefficienteigensolutionofthereducedsystem.Theapproachcombinesasparsefactorizationbasedonamulti-levelsupernodeeliminationtreeandalocaleigensolutionateachsupernode.Startingfromthelowestlevelsupernodes,weuseaCraig-Bamptonsubstructurereductiontechniquetosuccessivelyreducethesizeofthesystemasweprogressupwardintheeliminationtree.Ateachsupernodealocaleigensolutionisobtainedbasedonfixingthedegreesoffreedomconnectedtothenexthigherlevelsupernode(thesearethelocalretainedor“fixed-interface”degreesoffreedom).Attheendofthereductionphasethefullsystemhasbeenreducedsuchthatthereducedstiffnessmatrixisdiagonalandthereducedmassmatrixhasunitdiagonalvaluesbutcontainsoff-diagonalblocksofnonzerovaluesrepresentingthecouplingbetweenthesupernodes.Thecostofthereductionphasedependsonthesystemsizeandthenumberofeigenvaluesextracted(thenumberofeigenvaluesextractediscontrolledindirectlybyspecifyingthehighesteigenfrequencydesired).Youcanmaketrade-offsbetweencostandaccuracyduringthereductionphasethroughthe
parameter.Thisparametermultipliedbythehighesteigenfrequencyspecifiedforthefullmodelyieldsthehighesteigenfrequencythatisextractedinthelocalsupernodeeigensolutions.Increasingthevalueof
increasestheaccuracyofthereductionsincemorelocaleigenmodesareretained.However,increasingthenumberofretainedmodesalsoincreasesthecostofthereducedeigensolutionphase,whichisdiscussednext.Reducedeigensolutionphase:
InthisphaseAbaqus/Standardcomputestheeigensolutionofthereducedsystemthatcomesfromthepreviousphase.Althoughthereducedsystemtypicallyistwoordersofmagnitudesmallerinsizethantheoriginalsystem,generallyitstillistoolargetosolvedirectly.Thus,thesystemisfurtherreducedmainlybytruncatingtheretainedeigenmodesandthensolvedusingasinglesubspaceiterationstep.ThetwoAMSparameters,
and
,defineastartingsubspaceofthesubspaceiterationstep.Thedefaultvaluesoftheseparametersarecarefullychosenandprovideaccurateresultsinmostcases.Whenamoreaccuratesolutionisneeded,therecommendedprocedureistoincreasebothparametersproportionallyfromtheirrespectivedefaultvalues.Recoveryphase:
Inthisphasetheeigenvectorsoftheoriginalsystemarerecoveredusingeigenvectorsofthereducedproblemandlocalsubstructuremodes.Ifyourequestrecoveryatspecifiednodes,theeigenvectorsarecomputedonlyatthosenodes.
SubspaceiterationmethodForthesubspaceiterationprocedureyouneedonlyspecifythenumberofeigenvaluesrequired;Abaqus/Standardchoosesasuitablenumberofvectorsfortheiteration.Ifthesubspaceiterationtechniqueisrequested,youcanalsospecifythemaximumfrequencyofinterest;Abaqus/Standardextractseigenvaluesuntileithertherequestednumberofeigenvalueshasbeenextractedorthelastfrequencyextractedexceedsthemaximumfrequencyofinterest.Input
File
Usage:
\t"v610keywin"*FREQUENCY,EIGENSOLVER=SUBSPACEAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:
SubspaceStructural-acousticcoupling
Structural-acousticcouplingaffectsthenaturalfrequencyresponseofsystems.InAbaqusonlytheLanczoseigensolverfullyincludesthiseffect.InAbaqus/AMSandthesubspaceeigensolvertheeffectofcouplingisneglectedforthepurposeofcomputingthemodesandfrequencies;thesearecomputedusingnaturalboundaryconditionsatthestructural-acousticcouplingsurface.Anintermediatedegreeofconsiderationofthestructural-acousticcouplingoperatoristhedefaultinAbaqus/AMSandtheLanczoseigensolver,whichisbasedontheSIMarchitecture:thecouplingisprojectedontothemodalspaceandstoredforlateruse.Structural-acousticcouplingusingtheLanczoseigensolverwithouttheSIMarchitectureIfstructural-acousticcouplingispresentinthemodelandtheLanczosmethodnotbasedontheSIMarchitectureisused,Abaqus/Standardextractsthecoupledmodesbydefault.Becausethesemodesfullyaccountforcoupling,theyrepresentthemathematicallyoptimalbasisforsubsequentmodalprocedures.Theeffectismostnoticeableinstronglycoupledsystemssuchassteelshellsandwater.However,coupledstructural-acousticmodescannotbeusedinsubsequentrandomresponseorresponsespectrumanalyses.Youcandefinethecouplingusingeitheracoustic-structuralinteractionelements(see
“Acousticinterfaceelements,”
Section29.14.1)orthesurface-basedtieconstraint(see
“Acoustic,shock,andcoupledacoustic-structuralanalysis,”
Section6.10.1).Itispossibletoignorecouplingwhenextractingacousticandstructuralmodes;inthiscasethecouplingboundaryistreatedastraction-freeonthestructuralsideandrigidontheacousticside.Input
File
Usage:
Usethefollowingoptiontoaccountforstructural-acousticcouplingduringthefrequencyextraction:\t"v610keywin"*FREQUENCY,EIGENSOLVER=LANCZOS,ACOUSTICCOUPLING=ON(defaultiftheSIMarchitectureisnotused)Usethefollowingoptiontoignorestructural-acousticcouplingduringthefrequencyextraction:\t"v610keywin"*FREQUENCY,EIGENSOLVER=LANCZOS,ACOUSTICCOUPLING=OFFAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:Lanczos,toggle
Includeacoustic-structuralcouplingwhereapplicableStructural-acousticcouplingusingtheAMSandLanczoseigensolverbasedontheSIMarchitectureForfrequencyextractionsthatusetheAMSeigensolverortheLanczoseigensolverbasedontheSIMarchitecture,themodesarecomputedusingtraction-freeboundaryconditionsonthestructuralsideofthecouplingboundaryandrigidboundaryconditionsontheacousticside.Structural-acousticcouplingoperators(see
“Acoustic,shock,andcoupledacoustic-structuralanalysis,”
Section6.10.1)areprojectedbydefaultontothesubspaceofeigenvectors.Contributionstotheseglobaloperators,whichcomefromsurface-basedtieconstraintsdefinedbetweenstructuralandacousticsurfaces,areassembledintoglobalmatricesthatareprojectedontothemodeshapesandusedinsubsequentSIM-basedmodaldynamicprocedures.User-definedacoustic-structuralinteractionelements(see
“Acousticinterfaceelements,”
Section29.14.1)cannotbeusedinanAMSeigenvalueextractionanalysis.Input
File
Usage:
Useeitherofthefollowingoptionstoprojectstructural-acousticcouplingoperatorsontothesubspaceofeigenvectors:\t"v610keywin"*FREQUENCY,EIGENSOLVER=AMS,ACOUSTICCOUPLING=PROJECTION(defaultfortheAMSeigensolver)or\t"v610keywin"*FREQUENCY,EIGENSOLVER=LANCZOS,SIM,ACOUSTICCOUPLING=PROJECTION(defaultinSIM-basedanalysis)Usethefollowingoptiontodisabletheprojectionofstructural-acousticcouplingoperators:\t"v610keywin"*FREQUENCY,ACOUSTICCOUPLING=OFFAbaqus/CAE
Usage:
Usethefollowingoptiontoprojectstructural-acousticcouplingoperatorsontothesubspaceofeigenvectors:Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:AMS,toggleon
Projectacoustic-structuralcouplingwhereapplicableUsethefollowingoptiontodisabletheprojectionofstructural-acousticcouplingoperators:Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:AMS,toggleoff
Projectacoustic-structuralcouplingwhereapplicableProjectionofstructural-acousticcouplingoperatorsusingtheLanczoseigensolverbasedontheSIMarchitectureisnotsupportedinAbaqus/CAE.SpecifyingafrequencyrangefortheacousticmodesBecausestructural-acousticcouplingisignoredduringtheAMSandSIM-basedLanczoseigenanalysis,thecomputedresonanceswill,inprinciple,behigherthanthoseofthefullycoupledsystem.Thismaybeunderstoodasaconsequenceofneglectingthemassofthefluidinthestructuralphaseandviceversa.Forthecommonmetalandaircase,thestructuralresonancesmayberelativelyunaffected;however,someacousticmodesthataresignificantinthecoupledresponsemaybeomittedduetotheair'supwardfrequencyshiftduringeigenanalysis.Therefore,Abaqusallowsyoutospecifyamultiplier,sothatthemaximumacousticfrequencyintheanalysisistakentobehigherthanthestructuralmaximum.Input
File
Usage:
Useeitherofthefollowingoptions:\t"v610keywin"*FREQUENCY,EIGENSOLVER=AMS,,,,,,acousticrangefactoror\t"v610keywin"*FREQUENCY,EIGENSOLVER=LANCZOS,SIM,,,,,,acousticrangefactorAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Basic:
Eigensolver:AMS,
Acousticrangefactor:
acousticrangefactor
SpecifyingafrequencyrangefortheacousticmodeswhenusingtheSIM-basedLanczoseigenanalysisisnotsupportedinAbaqus/CAE.EffectsoffluidmotiononnaturalfrequencyanalysisofacousticsystemsToextractnaturalfrequenciesfromanacoustic-onlyorcoupledstructural-acousticsysteminwhichfluidmotionisprescribedusinganacousticflowvelocity,eithertheLanczosmethodorthecomplexeigenvalueextractionprocedurecanbeused.IntheformercaseAbaqusextractsreal-onlyeigenvaluesandconsidersthefluidmotion'seffectsonlyontheacousticstiffnessmatrix.Thus,theseresultsareofprimaryinterestasabasisforsubsequentlinearperturbationprocedures.Whenthecomplexeigenvalueextractionprocedureisused,thefluidmotioneffectsareincludedintheirentirety;thatis,theacousticstiffnessanddampingmatricesareincludedintheanalysis.Frequencyshift
FortheLanczosandsubspaceiterationeigensolversyoucanspecifyapositiveornegativeshiftedsquaredfrequency,
S.Thisfeatureisusefulwhenaparticularfrequencyisofconcernorwhenthenaturalfrequenciesofanunrestrainedstructureorastructurethatusessecondarybasemotions(largemassapproach)areneeded.Inthelattercaseashiftfromzero(thefrequencyoftherigidbodymodes)willavoidsingularityproblemsorround-offerrorsforthelargemassapproach;anegativefrequencyshiftisnormallyused.Thedefaultisnoshift.IftheLanczoseigensolverisinuseandtheuser-specifiedshiftisoutsidetherequestedfrequencyrange,theshiftwillbeadjustedautomaticallytoavalueclosetotherequestedrange.Normalization
FortheLanczosandsubspaceiterationeigensolversbothdisplacementandmasseigenvectornormalizationareavailable.Displacementnormalizationisthedefault.MassnormalizationistheonlyoptionavailableforSIM-basednaturalfrequencyextraction.Thechoiceofeigenvectornormalizationtypehasnoinfluenceontheresultsofsubsequentmodaldynamicsteps(see
\t"v610bmkwin"“Linearanalysisofarodunderdynamicloading,”
Section1.4.9oftheAbaqusBenchmarksManual).Thenormalizationtypedeterminesonlythemannerinwhichtheeigenvectorsarerepresented.Inadditiontoextractingthenaturalfrequenciesandmodeshapes,theLanczosandsubspaceiterationeigensolversautomaticallycalculatethegeneralizedmass,theparticipationfactor,theeffectivemass,andthecompositemodaldampingforeachmode;therefore,thesevariablesareavailableforuseinsubsequentlineardynamicanalyses.TheAMSeigensolvercomputesonlythegeneralizedmass.DisplacementnormalizationIfdisplacementnormalizationisselected,theeigenvectorsarenormalizedsothatthelargestdisplacemententryineachvectorisunity.Ifthedisplacementsarenegligible,asinatorsionalmode,theeigenvectorsarenormalizedsothatthelargestrotationentryineachvectorisunity.Inacoupledacoustic-structuralextraction,ifthedisplacementsandrotationsinaparticulareigenvectoraresmallwhencomparedtotheacousticpressures,theeigenvectorisnormalizedsothatthelargestacousticpressureintheeigenvectorisunity.Thenormalizationisdonebeforetherecoveryofdependentdegreesoffreedomthathavebeenpreviouslyeliminatedwithmulti-pointconstraintsorequationconstraints.Therefore,itispossiblethatsuchdegreesoffreedommayhavevaluesgreaterthanunity.Input
File
Usage:
\t"v610keywin"*FREQUENCY,NORMALIZATION=DISPLACEMENTAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Other:
Normalizeeigenvectorsby:
DisplacementMassnormalizationAlternatively,theeigenvectorscanbenormalizedsothatthegeneralizedmassforeachvectorisunity.The“generalizedmass”associatedwithmode
is
where
isthestructure'smassmatrixand
istheeigenvectorformode
.Thesuperscripts
N
and
M
refertodegreesoffreedomofthefiniteelementmodel.
Iftheeigenvectorsarenormalizedwithrespecttomass,alltheeigenvectorsarescaledsothat
=1.Forcoupledacoustic-structuralanalyses,anacousticcontributionfractiontothegeneralizedmassiscomputedaswell.Input
File
Usage:
\t"v610keywin"*FREQUENCY,NORMALIZATION=MASSAbaqus/CAE
Usage:
Stepmodule:
StepCreate:
Frequency:
Other:
Normalizeeigenvectorsby:
MassModalparticipationfactorsTheparticipationfactorformode
indirection
i,
,isavariablethatindicateshowstronglymotionintheglobal
x-,
y-,or
z-directionorrigidbodyrotationaboutoneoftheseaxesisrepresentedintheeigenvectorofthatmode.Thesixpossiblerigidbodymotionsareindicatedby
,
2,
,
6.Theparticipationfactorisdefinedaswhere
definesthemagnitudeoftherigidbodyresponseofdegreeoffreedom
N
inthemodeltoimposedrigidbodymotion(displacementorinfinitesimalrotation)oftype
i.Forexample,atanodewiththreedisplacementandthreerotationcomponents,
iswhere
isunityandallother
arezero;
x,
y,and
z
arethecoordinatesofthenode;and
,
,and
representthecoordinatesofthecenterofrotation.Theparticipationfactorsare,thus,definedforthetranslationaldegreesoffreedomandforrotationaroundthecenterofrotation.Forcoupledacoustic-structuraleigenfrequencyanalysis,anadditionalacousticparticipationfactoriscomputedasoutlinedin
\t"v610stmwin"“Coupledacoustic-structuralmediumanalysis,”
Section2.9.1oftheAbaqusTheoryManual.
ModaleffectivemassTheeffectivemassformode
associatedwithkinematicdirection
i
(,
2,
,
6)isdefinedasIftheeffectivemassesofallmodesareaddedinanyglobaltranslationaldirection,thesumshouldgivethetotalmassofthemodel(exceptformassatkinematicallyrestraineddegreesoffreedom).Thus,iftheeffectivemassesofth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金属制厨房调理器具项目发展计划
- Unit7 Lesson 5 The colourful seasons(教学设计)-2024-2025学年冀教版(2024)初中英语七年级上册
- 湘少版六年级英语上册教学工作计划(及进度表)
- 八年级生物下册 第9单元 保护人类与其他生物的公同家园 第26章 第2节《保护生物多样性》教学实录3 (新版)苏科版
- 安全文化建设实践策略计划
- 提升仓库品牌形象的工作思路计划
- 团队建设的实施计划
- 学期教学活动日历规划计划
- 劳保用品安全教育
- 广告互换合同(2025年版)
- 2024年江苏常州机电职业技术学院招聘44人历年高频难、易错点500题模拟试题附带答案详解
- 2024-2030年中国干黄花菜市场营销策略与未来发展方向建议研究报告版
- NGS与感染性疾病医学课件
- 数据资产化实践指南2024年
- 部编版语文六年级下册第五单元教材解读大单元集体备课
- DB32T 4787-2024城镇户外广告和店招标牌设施设置技术标准
- 钢结构安全交底
- 2024年社区工作者考试必背1000题题库含必背答案
- 2024年建筑业10项新技术
- 小米创始人雷军的创业经历
- 海南中维生物科技有限公司 蝗虫微孢子虫生物制剂项目 环评报告
评论
0/150
提交评论