版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.若分式有意义,则a的取值范围是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切实数2.在等腰中,,则的度数不可能是()A. B. C. D.3.满足下列条件的中,不是直角三角形的是A. B.C. D.4.如图,等腰△ABC中,AB=AC,MN是边BC上一条运动的线段(点M不与点B重合,点N不与点C重合),且MN=BC,MD⊥BC交AB于点D,NE⊥BC交AC于点E,在MN从左至右的运动过程中,△BMD和△CNE的面积之和()A.保持不变 B.先变小后变大C.先变大后变小 D.一直变大5.已知等腰三角形的两边长满足+(b﹣5)2=0,那么这个等腰三角形的周长为()A.13 B.14 C.13或14 D.96.已知4条线段的长度分别为2,4,6,8,若三条线段可以组成一个三角形,则这四条线段可以组成三角形的个数是()A.1个 B.2个 C.3个 D.4个7.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容:如图,已知,求作:,使.作法:(1)以为圆心,任意长为半径画弧,分别交、于点、;(2)作射线,并以点为圆心,长为半径画弧交于点;(3)以点为圆心,长为半径画弧交(2)步中所画弧于点;(4)作,即为所求作的角.A.表示点 B.表示C.表示 D.表示射线8.在△ABC中,若∠B=∠C=2∠A,则∠A的度数为()A.72° B.45° C.36° D.30°9.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有人,则可列方程为()A. B. C. D.10.下列命题的逆命题是真命题的是()A.对顶角相等 B.全等三角形的对应角相等 C.同一三角形内等边对等角 D.同角的补角相等二、填空题(每小题3分,共24分)11.如图,已知AC=BD,要使ABCDCB,则只需添加一个适合的条件是_________(填一个即可).12.当为______时,分式的值为1.13.已知一组数据:3,3,4,6,6,1.则这组数据的方差是_________.14.函数的自变量的取值范围是___________15.若,则以、为边长的等腰三角形的周长为______.16.如图,点、、都是数轴上的点,点、关于点对称,若点、表示的数分别是2,,则点表示的数为____________.17.如图,在中,,垂直平分,垂足为,交于,若的周长为,则的长为__________.18.计算的结果等于_______.三、解答题(共66分)19.(10分)某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(千克)的一次函数,且部分对应关系如下表所示.(1)求y关于x的函数关系式;(2)求旅客最多可免费携带行李的质量;(3)当行李费为3≤y≤10时,可携带行李的质量x的取值范围是.20.(6分)在平面直角坐标系中在图中描出,,,连接AB、BC、AC,得到,并将向右平移5个单位,再向上平移2个单位的得到;作出,使它与关于x轴对称.21.(6分)(新知理解)如图①,若点、在直线l同侧,在直线l上找一点,使的值最小.作法:作点关于直线l的对称点,连接交直线l于点,则点即为所求.(解决问题)如图②,是边长为6cm的等边三角形的中线,点、分别在、上,则的最小值为cm;(拓展研究)如图③,在四边形的对角线上找一点,使.(保留作图痕迹,并对作图方法进行说明)22.(8分)如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC长.23.(8分)如图,直线l₁:y=x+2与直线l₂:y=kx+b相交于点P(1,m)(1)写出k、b满足的关系;(2)如果直线l₂:y=kx+b与两坐标轴围成一等腰直角三角形,试求直线l₂的函数表达式;(3)在(2)的条件下,设直线l₂与x轴相交于点A,点Q是x轴上一动点,求当△APQ是等腰三角形时的Q点的坐标.24.(8分)图①是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积.方法1:;方法2:;(2)观察图②请你写出下列三个代数式:之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知:,求的值;②已知:,求:的值.25.(10分)某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.26.(10分)如图,直线l是一次函数y=kx+4的图象,且直线l经过点(1,2).(1)求k的值;(2)若直线l与x轴、y轴分别交于A、B两点,求△AOB的面积.
参考答案一、选择题(每小题3分,共30分)1、A【解析】分析:根据分母不为零,可得答案详解:由题意,得,解得故选A.点睛:本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.2、C【分析】根据等腰三角形的定义,分是顶角还是底角3种情况进行讨论分析确定答案.【详解】当是顶角时,和是底角,,当和是底角时,是顶角,,当和是底角时,是顶角,.所以不可能是.故选:C.【点睛】考查等腰三角形的定义,确定相等的底角,注意分情况讨论,分类不要漏掉情况.3、D【分析】根据勾股定理的逆定理可判断A、B两项,根据三角形的内角和定理可判断C、D两项,进而可得答案.【详解】解:A、∵,∴,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;B、由可设,∵,∴∠C=90°,所以△ABC是直角三角形,本选项不符合题意;C、∵,∴,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,所以△ABC是直角三角形,本选项不符合题意;D、由可设,∵∠A+∠B+∠C=180°,∴=180°,解得:,∴,所以△ABC不是直角三角形,本选项符合题意.故选:D.【点睛】本题考查了勾股定理的逆定理和三角形的内角和定理,属于基础题型,熟练掌握勾股定理的逆定理是解题的关键.4、B【分析】妨设BC=2a,∠B=∠C=α,BM=m,则CN=a﹣m,根据二次函数即可解决问题.【详解】解:不妨设BC=2a,∠B=∠C=α,BM=m,则CN=a﹣m,则有S阴=•m•mtanα+(a﹣m)•(a﹣m)tanα=tanα(m2+a2﹣2am+m2)=tanα(2m2﹣2am+a2)=;当时,有最小值;∴S阴的值先变小后变大,故选:B.【点睛】此题考查等腰三角形的性质,关键根据二次函数的性质得出面积改变规律.5、C【解析】首先依据非负数的性质求得a,b的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a﹣4=0,b﹣5=0,解得a=4,b=5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=1,所以,三角形的周长为13或1.故选:C.【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.6、A【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先任意的三个数组合可以是2,4,6或2,4,1或2,6,1或4,6,1.根据三角形的三边关系:其中4+6>1,能组成三角形.∴只能组成1个.故选:A.【点睛】考查了三角形的三边关系,解题的关键是了解三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.7、D【分析】根据尺规作一个角等于已知角的步骤,即可得到答案.【详解】作法:(1)以点为圆心,任意长为半径画弧,分别交、于点、;(2)作射线,并以点为圆心,为半径画弧交于点;(3)以点D为圆心,PQ长为半径画弧交(2)步中所画弧于点;(4)作射线,即为所求作的角.故选D.【点睛】本题主要考查尺规作一个角等于已知角,掌握尺规作图的基本步骤是解题的关键,注意,尺规作一个角等于已知角的原理是:SSS.8、C【解析】试题分析:根据三角形的内角和可知∠A+∠B+∠C=180°,即5∠A=180°,解得∠A=36°.故选C考点:三角形的内角和9、D【分析】设参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发时每名同学分担的车费为:元,根据每个同学比原来少摊了1元钱车费即可得到等量关系.【详解】设参加游览的同学共x人,根据题意得:1.故选:D.【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.10、C【分析】先交换原命题的题设与结论得到四个逆命题,然后判断它们的真假.【详解】解:A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、全等三角形对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C、同一三角形内等角对等边的逆命题是同一三角形内等边对等角,是真命题;D、同角的补角相等的逆命题是补角相等的角是同角,也可以是等角,是假命题;故选:C.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.二、填空题(每小题3分,共24分)11、AB=DC【分析】已知AC=BD,BC为公共边,故添加AB=DC后可根据“SSS”证明ABCDCB.【详解】解:∵BC为公共边,∴BC=CB,又∵AC=BD,∴要使ABCDCB,只需添加AB=DC即可故答案为:AB=DC【点睛】本题考察了全等三角形的判断,也可以添加“∠ABC=∠DCB”,根据“SAS”可证明ABCDCB.12、2.【分析】先根据分式的值为零的条件确定分子为零分母不为零,再求解方程和不等式即得.【详解】解:∵分式的值为1∴∴.故答案为:2.【点睛】本题考查分式的定义,正确抓住分式值为零的条件是解题关键.13、【分析】先求出这组数据的平均数,再根据方差公式即可求出方差.【详解】平均数为:方差为:故答案为:【点睛】本题考查了平均数和方差的计算公式.14、【分析】根据二次根式的性质和分母的意义,被开方数大于或等于0,分母不等于0,可以求出x的取值范围.【详解】由题意得解得故答案为:.【点睛】本题考查了二次根式的性质和分母的意义,掌握被开方数大于或等于0,分母不等于0是解题的关键.15、17【分析】先根据非负数的性质列式求出a、b的值,再分情况讨论求解即可.【详解】∵,∴a-3=0,7-b=0,解得a=3,b=7①若a=3是腰长,则底边为7,三角形的三边分别为3、3、7,∵3+3<7,∴3、3、7不能组成三角形。②若b=7是腰长,则底边为3,三角形的三边分别为7、7、3,能组成三角形,周长=7+7+3=17.∴以、为边长的等腰三角形的周长为17.【点睛】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16、4-【分析】先求出线段AB的长度,根据对称点的关系得到AC=AB,即可利用点A得到点C所表示的数.【详解】∵点、表示的数分别是2,,∴AB=-2,∵点、关于点对称,∴AC=AB=-2,∴点C所表示的数是:2-(-2)=4-,故答案为:4-.【点睛】此题考查数轴上两点间的距离公式,对称点的关系,点的平移规律,利用点的对称关系得到AC的长度是解题的关键.17、8cm;【分析】先根据线段垂直平分线的性质得出AD=BD,再根据的周长为,即可得出BC的长.【详解】解:∵AB的垂直平分线交AC于点D,垂足为点E,∴AD=BD,∵AD+CD=AC=10,∴BD+CD=10,∵BD+CD+BC=18,∴BC=;故答案为:8cm.【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.18、2【分析】先套用平方差公式,再根据二次根式的性质计算可得.【详解】原式=()2﹣()2=5﹣3=2,考点:二次根式的混合运算三、解答题(共66分)19、(1)y=x-2;(2)10千克;(3)25≤x≤1.【分析】(1)利用待定系数法求一次函数解析式即可解答;(2)令y=0时求出x的值即可;(3)分别求出y=3时,x的值和y=10时,x的值,再利用一次函数的增减性即可求出x的取值范围.【详解】解:(1)∵y是
x的一次函数,
∴设y=kx+b(k≠0)
将x=15,y=1;x=20,y=2分别代入y=kx+b,得,
解得:,
∴函数表达式为y=x-2,
(2)将y=0代入y=x-2,得0=x-2,
∴x=10,答:旅客最多可免费携带行李的质量为10千克.
(3)把y=3代入解析式,可得:x=25,
把y=10代入解析式,可得:x=1,∵>0∴y随x的增大而增大
所以可携带行李的质量x(kg)的取值范围是25≤x≤1,
故答案为:25≤x≤1.【点睛】本题考查了一次函数的应用,掌握利用了待定系数法求一次函数解析式和已知函数值的取值范围求自变量的取值范围是解决此题的关键.20、(1)见解析;(2)见解析.【解析】根据三个点的坐标描点、连线可得,再将三个顶点分别平移得到对应点,然后首尾顺次连接即可得;分别作出三个顶点关于x轴的对称点,然后首尾顺次连接即可得.【详解】解:如图所示,和即为所求.
如图所示,即为所求.【点睛】考查作图轴对称变换和平移变换,解题的关键是熟练掌握轴对称和平移变换的定义和性质,并据此得出变换后的对应点.21、(1);(2)作图见解析.【解析】试题分析:(1)作点E关于AD的对称点F,连接PF,则PE=PF,根据两点之间线段最短以及垂线段最短,得出当CF⊥AB时,PC+PE=PC+PF=CF(最短),最后根据勾股定理,求得CF的长即可得出PC+PE的最小值;
(2)根据轴对称的性质进行作图.方法1:作B关于AC的对称点E,连接DE并延长,交AC于P,连接BP,则∠APB=∠APD.方法2:作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,连接DP,则∠APB=∠APD.试题解析:(1)【解决问题】
如图②,作点E关于AD的对称点F,连接PF,则PE=PF,
当点F,P,C在一条直线上时,PC+PE=PC+PF=CF(最短),
当CF⊥AB时,CF最短,此时BF=AB=3(cm),
∴Rt△BCF中,CF=(cm),
∴PC+PE的最小值为3cm;
(2)【拓展研究】
方法1:如图③,作B关于AC的对称点E,连接DE并延长,交AC于P,点P即为所求,连接BP,则∠APB=∠APD.
方法2:如图④,作点D关于AC的对称点D',连接D'B并延长与AC的交于点P,点P即为所求,连接DP,则∠APB=∠APD.
22、(1)∠ECD=36°;(2)BC长是1.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=CE,然后根据等边对等角可得∠ECD=∠A;(2)根据等腰三角形性质和三角形内角和定理求出∠B=∠ACB=72°,由外角和定理求出∠BEC=∠A+∠ECD=72°,继而得∠BEC=∠B,推出BC=CE即可.【详解】解:(1)∵DE垂直平分AC,∴CE=AE,∴∠ECD=∠A=36°;(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=1.【点睛】本题考查了线段垂直平分线定理,等腰三角形的性质,三角形的内角和定理的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23、(1)k+b=3;(2)y=﹣x+4;(3)点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【分析】(1)将点P的坐标代入y=x+2并解得m=3,得到点P(1,3);将点P的坐标代入y=kx+b,即可求解;(2)由y=kx+b与两坐标轴围成一等腰直角三角形可求出直线的k值为﹣1,然后代入P点坐标求出b即可;(3)分AP=AQ、AP=PQ、PQ=AQ三种情况,分别求解即可.【详解】解:(1)将点P的坐标代入y=x+2可得:m=1+2=3,故点P(1,3),将点P的坐标代入y=kx+b可得:k+b=3;(2)∵y=kx+b与两坐标轴围成一等腰直角三角形,∴设该直线的函数图象与x轴,y轴分别交于点(a,0),(0,a),其中a>0,将(a,0),(0,a),代入得:ak+b=0,b=a,∴ak+a=0,即a(k+1)=0,∴k=﹣1,即y=﹣x+b,代入P(1,3)得:﹣1+b=3,解得:b=4,∴直线l2的表达式为:y=﹣x+4;(3)设点Q(m,0),而点A、P的坐标分别为:(4,0)、(1,3),∴AP=,当AP=AQ时,则点Q(4±3,0);当AP=PQ时,则点Q(﹣2,0);当PQ=AQ时,即(1﹣m)2+9=(4﹣m)2,解得:m=1,即点Q(1,0);综上,点Q的坐标为:(4±3,0)或Q(﹣2,0)或(1,0).【点睛】此题把一次函数与等腰三角形的性质相结合,考查了同学们综合运用所学知识的能力,是一道综合性较好的题目,其中(3),要注意分类求解,避免遗漏.24、(1)方法1:(m-n)2;方法2:(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(1)①1;②±1.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分(小正方形)的面积;(2)由面积关系容易得出结论;(1)①根据(2)所得出的关系式,容易求出结果;②先求出,再求(a)2,即可得出结果.【详解】(1)方法1:(m+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年电子商务平台软件开发与运营服务合同2篇
- 网管业务培训课程设计
- 八年级历史下册复习提要课件
- 抽样调查课程设计
- 无主灯教学课程设计
- 花草移植课程设计
- 2024年艺术的语录
- 水源热泵课程设计
- 医务科护士处理医务事务
- 食品行业客服工作者感悟
- 小学生心理问题的表现及应对措施【全国一等奖】
- 生产车间薪酬管理制度
- 小学生科普人工智能
- 2022年北京外国语大学博士生英语入学考试试题
- 提高做好群众工作的能力主讲陶通艾
- 3500A 手持式综合测试仪操作指导培训
- GB/T 1335.2-2008服装号型女子
- GB 31247-2014电缆及光缆燃烧性能分级
- DCC20网络型监视与报警
- 《简单教数学》读书心得课件
- 井底车场及硐室课件
评论
0/150
提交评论