《总体离散程度的估计》课件与同步练习_第1页
《总体离散程度的估计》课件与同步练习_第2页
《总体离散程度的估计》课件与同步练习_第3页
《总体离散程度的估计》课件与同步练习_第4页
《总体离散程度的估计》课件与同步练习_第5页
已阅读5页,还剩185页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

9.2.4总体离散程度的估计第九章统计9.2.4总体离散程度的估计第九章统计1课程目标1.结合实例,能用样本估计总体的离散程度参数(标准差、方差、极差).2.会求样本数据的方差、标准差、极差.3.理解离散程度参数的统计含义.课程目标1.结合实例,能用样本估计总体的离散程度参数(标准差2数学学科素养1.数学抽象:方差、标准差有关概念的理解;2.数学运算:求方差、标准差;3.数据分析:用样本平均数和样本标准差估计总体.

数学学科素养1.数学抽象:方差、标准差有关概念的理解;3自主预习,回答问题阅读课本209-213页,思考并完成以下问题1、标准差和方差各指什么?2、标准差和方差的特征各是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。自主预习,回答问题阅读课本209-213页,思考并完成以下问4(1)众数①定义:一组数据中出现次数最多的数据(即频率分布最大值所对应的样本数据)称为这组数据的众数.②特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.(2)中位数①定义:一组数据按从小到大(或从大到小)的顺序排成一列,处于最中间的一个数据(当数据个数是奇数时)或最中间两个数据的平均数(当数据个数是偶数时)称为这组数据的中位数.②特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.温故知新(1)众数温故知新5(3)平均数①定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,xn的②特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平,任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时的可靠性降低.(3)平均数61、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。

2、利用频率分布直方图(频率分布表),求样本的平均数、中位数和众数的近似估计,进而估计总体的平均数、中位数和众数.2、在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值。

3、平均数是频率分布直方图的“重心”.是直方图的平衡点.频率直方图中每个小长

方形的面积乘以小矩形底边中点的横坐标之和。1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横7三种数字特征的优缺点

三种数字特征的优缺点8

样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息.平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,很多时候还不能使我们做出有效决策.因此,我们需要一个统计数字刻画样本数据的离散程度.探究新知样本的众数、中位数和平均数常用来表示样本数据的9

方差、标准差1.思考(1)平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只用平均数还难以概括样本数据的实际状态.例如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:

甲:7

8

7

9

5

4

9

10

7

4

乙:9

5

7

8

7

6

8

6

7

7如果你是教练,你应当如何对这次射击作出评价?

10如果你是教练,你应当如何对这次射击作出评价?①甲、乙两人本次射击的平均成绩分别为多少环?他们的平均成绩一样吗?如果你是教练,你应当如何对这次射击作出评价?11②难道这两个人的水平就没有什么差异了吗?你能作出这两人成绩的频率分布条形图来说明其水平差异在哪里吗?提示频率分布条形图如下:从图上可以直观地看出,他们的水平还是有差异的,甲成绩比较分散,乙成绩相对集中.②难道这两个人的水平就没有什么差异了吗?你能作出这两人成绩的12(2)现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.

如何求得总体的平均数和标准差呢?提示:通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.(2)现实中的总体所包含的个体数往往是很多的,总体的平均数与13《总体离散程度的估计》课件与同步练习14《总体离散程度的估计》课件与同步练习15《总体离散程度的估计》课件与同步练习16

对标准差和方差的理解(1)样本标准差反映了各样本数据聚集于样本平均数周围的程度,标准差越小,表明各个样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的周围越分散.(2)若样本数据都相等,则s=0.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度,就由标准差来衡量.(4)数据的离散程度可以通过极差、方差或标准差来描述.极差反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感;方差则反映了一组数据围绕平均数波动的大小.为了得到以样本数据的单位表示的波动幅度,通常用标准差——样本方差的算术平方根来描述.归纳总结

17(5)标准差的大小不会越过极差.(6)方差、标准差、极差的取值范围为[0,+∞).当标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(7)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差和标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般采用标准差.(8)在实际问题中,总体平均数和总体标准差都是未知的.就像用样本平均数估计总体平均数一样,通常我们也用样本标准差去估计总体标准差.在随机抽样中,样本标准差依赖于样本的选取,具有随机性.(5)标准差的大小不会越过极差.181.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.①标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据

的离散程度越小.(

)②若两组数据的方差一样大,则说明这两组数据都是相同的.(

)答案:①√

②×做一做1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误192.对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们每次的最大速度(单位:m/s)如下:

甲:27,38,30,37,35,31

乙:33,29,38,34,28,36根据以上数据,试判断他们谁更优秀.2.对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们20《总体离散程度的估计》课件与同步练习21

有关平均数、方差的重要结论1.思考若x1,x2,…,xn的方差是s2,则ax1,ax2,…,axn的方差是多少?提示:由方差的定义知ax1,ax2,…,axn的方差是a2s2.2.填空(1)若x1,x2,…,xn的平均数是,则mx1+a,mx2+a,…,mxn+a的平均数是

.(2)数据x1,x2,…,xn与数据x1+a,x2+a,…xn+a的方差相等.(3)若x1,x2,…,xn的方差为s2,则ax1,ax2,…,axn的方差为a2s2.归纳总结有关平均数、方差的重要222.已知样本数据x1,x2,…,xn的平均数

=5,s2=2,则样本数据2x1+1,2x2+1,…,2xn+1的平均数为

,方差为

.

答案:11

8解析:因为样本数据x1,x2,…,xn的平均数

=5,所以样本数据2x1+1,2x2+1,…,2xn+1的平均数为2+1=2×5+1=11.方差为22×s2=4×2=8.2.已知样本数据x1,x2,…,xn的平均数=5,s23例1在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.6和12.59,抽取了女生27人,其平均数和方差分别为160.6和38.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?解:把男生样本记为x1,x2,…,x23,其平均数记为,方差记为

;把女生样本记为y1,y2,...y27,其平均数记为

,方差记为

;把总样本数据的平均数记为,方差记为

.根据方差的定义,总样本方差为典例解析例1在对树人中学高一年级学生身高的调查中,采用样本量比24《总体离散程度的估计》课件与同步练习25男生23人,其平均数和方差分别为170.6和12.59,女生27人,其平均数和方差分别为160.6和38.62把已知的男生、女生样本平均数和方差的取值代入,可得男生23人,其平均数和方差分别为170.6和12.59,把26归纳总结归纳总结271.在一个文艺比赛中,8名专业人士和12名观众代表各组成一个评判小组,给参赛选手打分.在给某选手的打分中,专业人士打分的平均数和标准差分别为47.4和3.7,观众代表打分的平均数和标准差为56.2和11.8,试根据这些数据计算这名选手得分的平均数和方差.跟踪训练1.在一个文艺比赛中,8名专业人士和12名观众代表各组成一个28所以这名选手得分的平均数为52.68分,方差为107.6所以这名选手得分的平均数为52.68分,方差为107.629归纳总结归纳总结309.013.614.95.94.07.16.45.419.42.02.28.613.85.410.24.96.814.02.010.52.15.75.116.86.011.11.311.27.74.92.310.016.712.012.47.85.213.62.422.43.67.18.825.63.218.35.12.03.012.022.210.85.52.024.39.93.65.64.47.95.124.56.47.54.720.55.515.72.65.75.56.016.02.49.53.717.03.84.12.35.37.88.14.313.36.81.37.04.91.87.128.010.213.817.910.15.54.63.221.6计算出样本平均数=,样本标准差s≈.8.796.20问题探究9.013.614.95.931如图所示,可以发现,这100个数据中大部分落在区间内,在区间外的只有7个.也就是说,绝大部分数据落在内.

样本标准差刻画了数据离平均数波动的浮动大小,平均数和标准差一起能反映数据取值的信息.如图所示,可以发现,这100个数据中大部分落在区间321.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是(

)A.x1,x2,…,xn的平均值

B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值

D.x1,x2,…,xn的中位数当堂达标答案:B解析:在A中,平均数是表示一组数据集中趋势的量,它是反映数据集中趋势的一项指标,故A不可以用来评估这种农作物亩产量的稳定程度;在B中,标准差能反映一组数据的离散程度,故B可以用来评估这种农作物亩产量的稳定程度;在C中,最大值是一组数据中最大的量,故C不可以用来评估这种农作物亩产量的稳定程度;在D中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D不可以用来评估这种农作物亩产量的稳定程度,故选B.1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地332.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本的方差为(

)答案:D2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样343.(多选)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下选项判断不正确的有(

)A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩的方差D.甲的成绩的极差小于乙的成绩的极差3.(多选)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的35答案:ABD答案:ABD364.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:若要从这四人中选择一人去参加该运动会射击项目比赛,最佳人选是

.(填“甲”“乙”“丙”“丁”中的一个)

答案:丙解析:分析表格数据可知,乙与丙的平均环数最多,又丙的方差比乙小,说明丙成绩发挥得较为稳定,所以最佳人选为丙.4.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均37分析可以根据简化公式进行计算,也可以把每个数据减去一个数,用找齐法计算.5.计算数据54,55,53,56,57,58的方差.分析可以根据简化公式进行计算,也可以把每个数据减去一个数,用38解(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的众数比较看,甲组成绩好些.解(1)甲组成绩的众数为90,乙组成绩的众数为70,从成绩的39《总体离散程度的估计》课件与同步练习40《总体离散程度的估计》课件与同步练习411.极差的定义及特征:2.方差、标准差的定义及特征总体方差、总体标准差的定义样本方差、样本标准差的定义3.会求方差、标准差,并做出决策4.方差的运算性质:5.会求分层抽样的方差课堂小结1.极差的定义及特征:课堂小结42第九章统计《9.2.4总体离散程度的估计》同步练习第九章统计《9.2.4总体离散程度的估计》同步练习43知识清单知识清单44《总体离散程度的估计》课件与同步练习45离散

标准差

离散大小标准差46小试牛刀小试牛刀47《总体离散程度的估计》课件与同步练习48《总体离散程度的估计》课件与同步练习49题型分析举一反三题型分析举一反三50《总体离散程度的估计》课件与同步练习51解题技巧(实际应用中标准差、方差的意义)解题技巧(实际应用中标准差、方差的意义)52【跟踪训练1】【跟踪训练1】53《总体离散程度的估计》课件与同步练习54《总体离散程度的估计》课件与同步练习55《总体离散程度的估计》课件与同步练习56解题技巧(用样本平均数和样本标准差估计总体注意事项)

(1)标准差代表数据的离散程度,考虑数据范围时需要加减标准差.(2)计算样本平均数、样本方差直接利用公式,注意公式的变形和整体代换.解题技巧(用样本平均数和样本标准差估计总体注意事项)(1)57【跟踪训练2】【跟踪训练2】58《总体离散程度的估计》课件与同步练习59《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习答案答案《总体离散程度的估计》课件与同步练习答案答案《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习答案答案答案答案《总体离散程度的估计》课件与同步练习答案答案答案答案《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习答案答案答案答案《总体离散程度的估计》课件与同步练习解析答案解析答案《总体离散程度的估计》课件与同步练习《总体离散程度的估计》课件与同步练习答案答案答案答案解析答案解析答案解析答案解析答案答案答案解析解析解析答案解析答案《总体离散程度的估计》课件与同步练习答案答案9.2.4总体离散程度的估计第九章统计9.2.4总体离散程度的估计第九章统计96课程目标1.结合实例,能用样本估计总体的离散程度参数(标准差、方差、极差).2.会求样本数据的方差、标准差、极差.3.理解离散程度参数的统计含义.课程目标1.结合实例,能用样本估计总体的离散程度参数(标准差97数学学科素养1.数学抽象:方差、标准差有关概念的理解;2.数学运算:求方差、标准差;3.数据分析:用样本平均数和样本标准差估计总体.

数学学科素养1.数学抽象:方差、标准差有关概念的理解;98自主预习,回答问题阅读课本209-213页,思考并完成以下问题1、标准差和方差各指什么?2、标准差和方差的特征各是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。自主预习,回答问题阅读课本209-213页,思考并完成以下问99(1)众数①定义:一组数据中出现次数最多的数据(即频率分布最大值所对应的样本数据)称为这组数据的众数.②特征:一组数据中的众数可能不止一个,也可能没有,反映了该组数据的集中趋势.(2)中位数①定义:一组数据按从小到大(或从大到小)的顺序排成一列,处于最中间的一个数据(当数据个数是奇数时)或最中间两个数据的平均数(当数据个数是偶数时)称为这组数据的中位数.②特征:一组数据中的中位数是唯一的,反映了该组数据的集中趋势.在频率分布直方图中,中位数左边和右边的直方图的面积相等.温故知新(1)众数温故知新100(3)平均数①定义:一组数据的和与这组数据的个数的商.数据x1,x2,…,xn的②特征:平均数对数据有“取齐”的作用,代表该组数据的平均水平,任何一个数据的改变都会引起平均数的变化,这是众数和中位数都不具有的性质.所以与众数、中位数比较起来,平均数可以反映出更多的关于样本数据全体的信息,但平均数受数据中极端值的影响较大,使平均数在估计总体时的可靠性降低.(3)平均数1011、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横坐标。

2、利用频率分布直方图(频率分布表),求样本的平均数、中位数和众数的近似估计,进而估计总体的平均数、中位数和众数.2、在样本中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数,因此,在频率分布直方图中,中位数左边和右边的直方图的面积应该相等,由此可以估计中位数的值。

3、平均数是频率分布直方图的“重心”.是直方图的平衡点.频率直方图中每个小长

方形的面积乘以小矩形底边中点的横坐标之和。1、众数在样本数据的频率分布直方图中,就是最高矩形的中点的横102三种数字特征的优缺点

三种数字特征的优缺点103

样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息.平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,很多时候还不能使我们做出有效决策.因此,我们需要一个统计数字刻画样本数据的离散程度.探究新知样本的众数、中位数和平均数常用来表示样本数据的104

方差、标准差1.思考(1)平均数向我们提供了样本数据的重要信息,但是,平均数有时也会使我们作出对总体的片面判断,因为这个平均数掩盖了一些极端的情况,而这些极端情况显然是不能忽视的.因此,只用平均数还难以概括样本数据的实际状态.例如:有两位射击运动员在一次射击测试中各射靶10次,每次命中的环数如下:

甲:7

8

7

9

5

4

9

10

7

4

乙:9

5

7

8

7

6

8

6

7

7如果你是教练,你应当如何对这次射击作出评价?

105如果你是教练,你应当如何对这次射击作出评价?①甲、乙两人本次射击的平均成绩分别为多少环?他们的平均成绩一样吗?如果你是教练,你应当如何对这次射击作出评价?106②难道这两个人的水平就没有什么差异了吗?你能作出这两人成绩的频率分布条形图来说明其水平差异在哪里吗?提示频率分布条形图如下:从图上可以直观地看出,他们的水平还是有差异的,甲成绩比较分散,乙成绩相对集中.②难道这两个人的水平就没有什么差异了吗?你能作出这两人成绩的107(2)现实中的总体所包含的个体数往往是很多的,总体的平均数与标准差是不知道的.

如何求得总体的平均数和标准差呢?提示:通常的做法是用样本的平均数和标准差去估计总体的平均数与标准差.这与前面用样本的频率分布来近似地代替总体分布是类似的.只要样本的代表性好,这样做就是合理的,也是可以接受的.(2)现实中的总体所包含的个体数往往是很多的,总体的平均数与108《总体离散程度的估计》课件与同步练习109《总体离散程度的估计》课件与同步练习110《总体离散程度的估计》课件与同步练习111

对标准差和方差的理解(1)样本标准差反映了各样本数据聚集于样本平均数周围的程度,标准差越小,表明各个样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的周围越分散.(2)若样本数据都相等,则s=0.(3)当样本的平均数相等或相差无几时,就要用样本数据的离散程度来估计总体的数字特征,而样本数据的离散程度,就由标准差来衡量.(4)数据的离散程度可以通过极差、方差或标准差来描述.极差反映了一组数据变化的最大幅度,它对一组数据中的极端值非常敏感;方差则反映了一组数据围绕平均数波动的大小.为了得到以样本数据的单位表示的波动幅度,通常用标准差——样本方差的算术平方根来描述.归纳总结

112(5)标准差的大小不会越过极差.(6)方差、标准差、极差的取值范围为[0,+∞).当标准差、方差为0时,样本各数据全相等,表明数据没有波动幅度,数据没有离散性.(7)因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差和标准差在刻画样本数据的分散程度上是一样的,但在解决实际问题时,一般采用标准差.(8)在实际问题中,总体平均数和总体标准差都是未知的.就像用样本平均数估计总体平均数一样,通常我们也用样本标准差去估计总体标准差.在随机抽样中,样本标准差依赖于样本的选取,具有随机性.(5)标准差的大小不会越过极差.1131.判断下列说法是否正确,正确的在后面的括号内打“√”,错误的打“×”.①标准差、方差越大,数据的离散程度越大;标准差、方差越小,数据

的离散程度越小.(

)②若两组数据的方差一样大,则说明这两组数据都是相同的.(

)答案:①√

②×做一做1.判断下列说法是否正确,正确的在后面的括号内打“√”,错误1142.对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们每次的最大速度(单位:m/s)如下:

甲:27,38,30,37,35,31

乙:33,29,38,34,28,36根据以上数据,试判断他们谁更优秀.2.对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们115《总体离散程度的估计》课件与同步练习116

有关平均数、方差的重要结论1.思考若x1,x2,…,xn的方差是s2,则ax1,ax2,…,axn的方差是多少?提示:由方差的定义知ax1,ax2,…,axn的方差是a2s2.2.填空(1)若x1,x2,…,xn的平均数是,则mx1+a,mx2+a,…,mxn+a的平均数是

.(2)数据x1,x2,…,xn与数据x1+a,x2+a,…xn+a的方差相等.(3)若x1,x2,…,xn的方差为s2,则ax1,ax2,…,axn的方差为a2s2.归纳总结有关平均数、方差的重要1172.已知样本数据x1,x2,…,xn的平均数

=5,s2=2,则样本数据2x1+1,2x2+1,…,2xn+1的平均数为

,方差为

.

答案:11

8解析:因为样本数据x1,x2,…,xn的平均数

=5,所以样本数据2x1+1,2x2+1,…,2xn+1的平均数为2+1=2×5+1=11.方差为22×s2=4×2=8.2.已知样本数据x1,x2,…,xn的平均数=5,s118例1在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男生23人,其平均数和方差分别为170.6和12.59,抽取了女生27人,其平均数和方差分别为160.6和38.62.你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?解:把男生样本记为x1,x2,…,x23,其平均数记为,方差记为

;把女生样本记为y1,y2,...y27,其平均数记为

,方差记为

;把总样本数据的平均数记为,方差记为

.根据方差的定义,总样本方差为典例解析例1在对树人中学高一年级学生身高的调查中,采用样本量比119《总体离散程度的估计》课件与同步练习120男生23人,其平均数和方差分别为170.6和12.59,女生27人,其平均数和方差分别为160.6和38.62把已知的男生、女生样本平均数和方差的取值代入,可得男生23人,其平均数和方差分别为170.6和12.59,把121归纳总结归纳总结1221.在一个文艺比赛中,8名专业人士和12名观众代表各组成一个评判小组,给参赛选手打分.在给某选手的打分中,专业人士打分的平均数和标准差分别为47.4和3.7,观众代表打分的平均数和标准差为56.2和11.8,试根据这些数据计算这名选手得分的平均数和方差.跟踪训练1.在一个文艺比赛中,8名专业人士和12名观众代表各组成一个123所以这名选手得分的平均数为52.68分,方差为107.6所以这名选手得分的平均数为52.68分,方差为107.6124归纳总结归纳总结1259.013.614.95.94.07.16.45.419.42.02.28.613.85.410.24.96.814.02.010.52.15.75.116.86.011.11.311.27.74.92.310.016.712.012.47.85.213.62.422.43.67.18.825.63.218.35.12.03.012.022.210.85.52.024.39.93.65.64.47.95.124.56.47.54.720.55.515.72.65.75.56.016.02.49.53.717.03.84.12.35.37.88.14.313.36.81.37.04.91.87.128.010.213.817.910.15.54.63.221.6计算出样本平均数=,样本标准差s≈.8.796.20问题探究9.013.614.95.9126如图所示,可以发现,这100个数据中大部分落在区间内,在区间外的只有7个.也就是说,绝大部分数据落在内.

样本标准差刻画了数据离平均数波动的浮动大小,平均数和标准差一起能反映数据取值的信息.如图所示,可以发现,这100个数据中大部分落在区间1271.为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是(

)A.x1,x2,…,xn的平均值

B.x1,x2,…,xn的标准差C.x1,x2,…,xn的最大值

D.x1,x2,…,xn的中位数当堂达标答案:B解析:在A中,平均数是表示一组数据集中趋势的量,它是反映数据集中趋势的一项指标,故A不可以用来评估这种农作物亩产量的稳定程度;在B中,标准差能反映一组数据的离散程度,故B可以用来评估这种农作物亩产量的稳定程度;在C中,最大值是一组数据中最大的量,故C不可以用来评估这种农作物亩产量的稳定程度;在D中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”,故D不可以用来评估这种农作物亩产量的稳定程度,故选B.1.为评估一种农作物的种植效果,选了n块地作试验田.这n块地1282.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本的方差为(

)答案:D2.样本中共有五个个体,其值分别为a,0,1,2,3.若该样1293.(多选)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则以下选项判断不正确的有(

)A.甲的成绩的平均数小于乙的成绩的平均数B.甲的成绩的中位数等于乙的成绩的中位数C.甲的成绩的方差小于乙的成绩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论