2022年山东省临沂市临沭县第五初级中学数学八年级上册期末达标检测模拟试题含解析_第1页
2022年山东省临沂市临沭县第五初级中学数学八年级上册期末达标检测模拟试题含解析_第2页
2022年山东省临沂市临沭县第五初级中学数学八年级上册期末达标检测模拟试题含解析_第3页
2022年山东省临沂市临沭县第五初级中学数学八年级上册期末达标检测模拟试题含解析_第4页
2022年山东省临沂市临沭县第五初级中学数学八年级上册期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一次函数(m为常数),它的图像可能为()A. B.C. D.2.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为()A.6 B.12 C.24 D.483.如图,是的中线,于点,已知的面积是5,,则的长为()A. B. C. D.14.下列命题中,是假命题的是()A.平行四边形的两组对边分别相等 B.两组对边分别相等的四边形是平行四边形C.矩形的对角线相等 D.对角线相等的四边形是矩形5.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)6.如图,已知为等腰三角形,,将沿翻折至为的中点,为的中点,线段交于点,若,则()A. B. C. D.7.下列一次函数中,y随x增大而增大的是()A.y=﹣3x B.y=x﹣2 C.y=﹣2x+3 D.y=3﹣x8.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为A.3 B. C.4 D.9.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8 B.10 C.12 D.1410.如图,在中,的垂直平分线交于点,交于点.的周长为,的周长为,则的长为()A. B. C. D.11.在平面直角坐标系中,点(3,-4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限12.在△ABC中,AB=2cm,AC=5cm,若BC的长为整数,则BC的长可能是()A.2cm B.3cm C.6cm D.7cm二、填空题(每题4分,共24分)13.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.14.已知,则_____________________;15.如图所示,在中,,将点C沿折叠,使点C落在边D点,若,则______.16.若a=2019,b=2020,则[a2(a﹣2b)﹣a(a﹣b)2]÷b2的值为_____.17.在人体血液中,红细胞直径约为0.00077cm,数据0.00077用科学记数法表示为_____.18.若,则的值为_________.三、解答题(共78分)19.(8分)定义:在平面直角坐标系中,对于任意两点,,若点满足,,那么称点是点,的融合点.例如:,,当点满是,时,则点是点,的融合点,(1)已知点,,,请说明其中一个点是另外两个点的融合点.(2)如图,点,点是直线上任意一点,点是点,的融合点.①试确定与的关系式.②若直线交轴于点,当为直角三角形时,求点的坐标.20.(8分)如图,在平面直角坐标系中,点为坐标原点,已知三个定点坐标分别为,,.(1)画出关于轴对称的,点的对称点分别是点,则的坐标:(_________,_________),(_________,_________),(_________,_________);(2)画出点关于轴的对称点,连接,,,则的面积是___________.21.(8分)已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;(2)△ABC的面积是.(3)点P(a+1,b-1)与点C关于x轴对称,则a=,b=.22.(10分)计算:①②23.(10分)如图,在中,,于点,于点.,求的度数.24.(10分)第7届世界军人运动会于2019年10月18日在武汉开幕,为备战本届军运会,某运动员进行了多次打靶训练,现随机抽取该运动员部分打靶成绩进行整理分析,共分成四组:(优秀)、(良好)、(合格)、(不合格),绘制了如下不完整的统计图:根据以上信息,解答下列问题:(1)直接写出本次统计成绩的总次数和图中的值.(2)求扇形统计图中(合格)所对应圆心角的度数.(3)请补全条形统计图.25.(12分)计算(1)(2)(3)(4)解方程26.观察下列等式:根据上述规律解决下列问题:①;②;③;④;……(1)完成第⑤个等式;(2)写出你猜想的第个等式(用含的式子表示)并证明其正确性.

参考答案一、选择题(每题4分,共48分)1、A【分析】根据一次项系数-1<0可判断函数增减性,根据可判断函数与y轴交点,由此可得出正确选项.【详解】解:∵-1<0,,∴一次函数与y轴相交于非负半轴,且函数是递减的,符合条件的选项为A,故选:A.【点睛】本题考查了一次函数图象与系数的关系,熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大,图象一定过第一、三象限;当k<0,y随x的增大而减小,图象一定过第二、四象限;当b>0,图象与y轴的交点在x轴上方;当b=0,图象过原点;当b<0,图象与y轴的交点在x轴下方.2、C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为,,∴此三角形为直角三角形,,故选C.【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.3、A【分析】根据三角形的中线的性质得:的面积是2.5,再根据三角形的面积公式,即可求解.【详解】∵是的中线,的面积是5,∴的面积是2.5,∵,,∴.故选:A.【点睛】本题主要考查三角形的中线的性质以及三角形的面积公式,掌握三角形的中线把三角形的面积平分,是解题的关键.4、D【分析】分别利用平行四边形的性质以及矩形的性质与判定方法分析得出即可.【详解】解:A、平行四边形的两组对边分别相等,正确,不合题意;B、两组对边分别相等的四边形是偶像四边形,正确,不合题意;C、矩形的对角线相等,正确,不合题意;D、对角线相等的四边形是矩形,错误,等腰梯形的对角线相等,故此选项正确.故选D.“点睛”此题主要考查了命题与定理,正确把握矩形的判定与性质是解题的关键.5、D【解析】因为∠DAM和∠CBM是直线AD和BC被直线AB的同位角,因为∠DAM=∠CBM根据同位角相等,两直线平行可得AD∥BC,所以D选项错误,故选D.6、D【分析】连接,由三角形的中线将三角形面积分成相等的两部分,用m表示出△AEG的面积,再由等高三角形面积比等于底边之比求解即可.【详解】解:如图,连接,设,则,∵为的中点,,∴故选:D.【点睛】本题主要考查了与三角形中线有关的面积问题,掌握三角形的中线将三角形面积分成相等的两部分是解题的关键.7、B【解析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.【点睛】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.8、A【解析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【详解】解:过点A作AE⊥BC于点E,△ABC的面积=×BC×AE=,

由勾股定理得,AC==5,则×5×BD=,

解得BD=3,故选:A.【点睛】本题考查勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.9、B【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】根据题意,将周长为8的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=1.故选:B.【点睛】此题主要考查平移的性质,解题的关键是熟知平移的特点及周长的定义.10、B【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】∵AB的垂直平分线交AB于点D,∴AE=BE,∵△ACE的周长=AC+AE+CE=AC+BC=13,△ABC的周长=AC+BC+AB=19,∴AB=△ABC的周长-△ACE的周长=19-13=6,故答案为:B.【点睛】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.11、D【解析】试题分析:应先判断出点的横纵坐标的符号,进而判断点所在的象限.解:∵点的横坐标3>0,纵坐标﹣4<0,∴点P(3,﹣4)在第四象限.故选D.12、C【解析】根据三角形的三边关系即可求出BC的范围,再选出即可.【详解】∵AB=2cm,AC=5cm∴BC,即BC,故选C.【点睛】此题主要考查三角形的三边关系,解题的关键是熟知三角形的三边关系:两边之和大于第三边,两边之差小于第三边.二、填空题(每题4分,共24分)13、y=x+1或y=﹣3x﹣1.【分析】过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB=BC,∠ABC=10°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.【详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴AO•OB+(CD+OB)•OD=×3×a+(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,或解得:或,∴直线AB的解析式为或y=﹣3x﹣1.故答案为或y=﹣3x﹣1.【点睛】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.14、7【解析】把已知条件平方,然后求出所要求式子的值.【详解】∵,∴,∴=9,∴=7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.15、1【分析】根据折叠的性质可得∠EDA=90°,ED=EC=6cm,再根据直角三角形30°角所对边是斜边的一半可得AE,从而可得AC.【详解】解:根据折叠的性质DE=EC=6cm,∠EDB=∠C=90°,∴∠EDA=90°,∵∠A=30°,∴AE=2DE=12cm,∴AC=AE+EC=1cm,故答案为:1.【点睛】本题考查折叠的性质,含30°角的直角三角形.理解直角三角形斜边上的中线等于斜边的一半.16、﹣1.【分析】原式中括号中利用完全平方公式,单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,把a与b的值代入计算即可求出值.【详解】解:原式=(a3﹣2a2b﹣a3+2a2b﹣ab2)]÷b2=﹣a,当a=1时,原式=﹣1.故答案为:﹣1.【点睛】本题主要考查了整式乘法的运用,准确的展开并化成最简的式子,再把已知的数值代入求解,化简是关键一步.17、7.7×10﹣1【解析】分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解:0.00077=7.7×10-1,故答案为7.7×10-1.点睛:本题主要考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18、1【分析】根据同底数幂相乘,底数不变,指数相加即可列出方程,求出m的值.【详解】解:∵∴∴解得:m=1故答案为:1.【点睛】此题考查的是幂的运算性质,掌握同底数幂相乘,底数不变,指数相加是解决此题的关键.三、解答题(共78分)19、(1)点是点,的融合点;(2)①,②符合题意的点为,.【分析】(1)由题中融合点的定义即可求得答案.(2)①由题中融合点的定义可得,.②结合题意分三种情况讨论:(ⅰ)时,画出图形,由融合点的定义求得点坐标;(ⅱ)时,画出图形,由融合点的定义求得点坐标;(ⅲ)时,由题意知此种情况不存在.【详解】(1)解:,∴点是点,的融合点(2)解:①由融合点定义知,得.又∵,得∴,化简得.②要使为直角三角形,可分三种情况讨论:(i)当时,如图1所示,设,则点为.由点是点,的融合点,可得或,解得,∴点.(ii)当时,如图2所示,则点为.由点是点,的融合点,可得点.(iii)当时,该情况不存在.综上所述,符合题意的点为,【点睛】本题是一次函数综合运用题,涉及到勾股定理得运用,此类新定义题目,通常按照题设顺序,逐次求解.20、(1)画图见解析;-4,-1;-3,-3;-1,-2;(2)画图见解析,4.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得.【详解】(1)如图所示,即为所求,;(2)如图所示,的面积是【点睛】本题主要考查作图-轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21、(1)答案见解析,A1(-1,-4)、B1(-5,-4)、C1(-4,-1);(1)6;(3)3,1.【解析】试题分析:(1)先得到△ABC关于y轴对称的对应点,再顺次连接即可;(1)利用矩形的面积减去三个顶点上三角形的面积即可;(3)由关于x轴对称两点横坐标相等,纵坐标互为相反,即可求得a,b的值.试题解析:(1)如图所示:A1(-1,-4)、B1(-5,-4)、C1(-4,-1);(1)S△ABC=4×3-×3×3-×3×1=6;(3)∵P(a+1,b-1)与点C(4,-1)关于x轴对称,∴,解得,故答案为:3,1.点睛:本题主要考查了利用轴对称变换进行作图,解题时注意:先找到图形的关键点,分别把这几个点轴对称,在顺次连接对应点即可得到所求图形.22、①;②【分析】①根据二次根式的混合运算法则计算;②利用加减消元法求解.【详解】解:①===;②整理得:,①×2+②得:11x=22,解得:x=2,代入①中,解得:y=3,∴方程组的解为:.【点睛】本题考查了二次根式的混合运算以及二元一次方程组,解题的关键是掌握运算法则和加减消元法.23、.【分析】根据等腰三角形的性质得,再根据直角三角形的性质,即可得到答案.【详解】∵,,,∴,∵,∴,∴.【点睛】本题主要考查等腰三角形的性质以及直角三角形的性质定理,掌握等腰三角形“三线合一”是解题的关键.24、(1)本次统计成绩的总次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论