版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.下列图案不是轴对称图形的是()A. B. C. D.2.若3n+3n+3n=,则n=()A.﹣3 B.﹣2 C.﹣1 D.03.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是()A.2.5 B.3 C.3.5 D.44.如图,甲、乙、丙、丁四位同学给出了四种表示大长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的有()A.①② B.③④ C.①②③ D.①②③④5.如图所示,△ABC≌△BAD,点A与点B,点C与点D是对应顶点,如果∠DAB=50°,∠DBA=40°,那么∠DAC的度数为()A.50° B.40° C.10° D.5°6.如图,Rt△ABC中,CD是斜边AB上的高,∠A=30°,BD=2cm,则AB的长度是()A.2cm B.4cmC.8cm D.16cm7.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭本月与上月相比节水情况统计表:节水量()0.20.30.40.50.6家庭数(个)12241这10个家庭节水量的平均数和中位数分别是()A.0.42和0.4 B.0.4和0.4 C.0.42和0.45 D.0.4和0.458.在下列交通标识图案中,不是轴对称图形的是()A. B. C. D.9.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程(米)与时间(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了米C.在秒时,两队所走路程相等D.从出发到秒的时间段内,乙队的速度慢10.以下列各组数为边长,能构成直角三角形的是()A.2,3,4 B.3,4,6 C.5,12,13 D.6,7,11二、填空题(每小题3分,共24分)11.某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为______.12.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.13.使有意义的x的取值范围为______.14.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.15.如图,四边形中,,,则的面积为__________.16.已知,分别是的整数部分和小数部分,则的值为_______.17.当x________时,分式有意义.18.若,则________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,已知点A的坐标为(15,0),点B的坐标为(6,12),点C的坐标为(0,6),直线AB交y轴于点D,动点P从点C出发沿着y轴正方向以每秒2个单位的速度运动,同时,动点Q从点A出发沿着射线AB以每秒a个单位的速度运动设运动时间为t秒,(1)求直线AB的解析式和CD的长.(2)当△PQD与△BDC全等时,求a的值.(3)记点P关于直线BC的对称点为,连结当t=3,时,求点Q的坐标.20.(6分)(1)计算:;(2)分解因式:.21.(6分)如图,△ABC中,AB=AC,点E、F在边BC上,BF=CE,求证:AE=AF.22.(8分)在等腰Rt△ABC中,AB=AC,∠BAC=90°(1)如图1,D,E是等腰Rt△ABC斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF①求证:△AED≌△AFD;②当BE=3,CE=7时,求DE的长;(2)如图2,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,求DE的长.23.(8分)如图,一次函数的图像与的图像交于点,与轴和轴分别交于点和点,且点的横坐标为.(1)求的值与的长;(2)若点为线段上一点,且,求点的坐标.24.(8分)如图,为的高,为角平分线,若.(1)求的度数;(2)求的度数;(3)若点为线段上任意一点,当为直角三角形时,则求的度数.25.(10分)今年,长沙开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某学校开学初购进型和型两种分类垃圾桶,购买型垃圾桶花费了2500元,购买型垃圾桶花费了2000元,且购买型垃圾桶数量是购买型垃圾桶数量的2倍,已知购买一个型垃圾桶比购买一个型垃圾桶多花30元.(1)求购买一个型垃圾桶、B型垃圾桶各需多少元?(2)由于实际需要,学校决定再次购买分类垃圾桶,已知此次购进型和型两种分类垃圾桶的数量一共为50个,恰逢市场对这两种垃圾桶的售价进行调整,型垃圾桶售价比第一次购买时提高了8%,型垃圾桶按第一次购买时售价的9折出售,如果此次购买型和型这两种垃圾桶的总费用不超过3240元,那么此次最多可购买多少个型垃圾桶?26.(10分)已知在平面直角坐标系中有三点、,.请回答如下问题:(1)在平面直角坐标系内描出点、、的位置,并求的面积;(2)在平面直角坐标系中画出,使它与关于轴对称,并写出三顶点的坐标;(3)若是内部任意一点,请直接写出这点在内部的对应点的坐标.
参考答案一、选择题(每小题3分,共30分)1、D【解析】根据轴对称图形的概念,沿着某条直线翻折,直线两侧的部分能够完全重合的图形是轴对称图形,因此D不是轴对称图形,故选D.2、A【分析】直接利用负整数指数幂的性质结合同底数幂的乘法运算法则将原式变形得出答案.【详解】解:,,则,解得:.故选:.【点睛】此题主要考查了负整数指数幂的性质以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.3、B【分析】作DH⊥AC于H,如图,利用角平分线的性质得DH=DE=2,根据三角形的面积公式得×2×AC+×2×4=7,于是可求出AC的值.【详解】解:作DH⊥AC于H,如图,
∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DH⊥AC,
∴DH=DE=2,
∵S△ABC=S△ADC+S△ABD,
∴×2×AC+×2×4=7,
∴AC=1.
故选:B.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.这里的距离是指点到角的两边垂线段的长.4、D【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;
②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【详解】①(2a+b)(m+n),本选项正确;
②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【点睛】此题考查了整式乘法,灵活计算面积是解本题的关键.5、C【解析】根据全等三角形的性质得到∠DBA=∠CAB=40°,根据角与角间的和差关系计算即可.【详解】∵△ABC≌△BAD,点A与点B,点C与点D是对应顶点,∠DBA=40°,∴∠DBA=∠CAB=40°,∴∠DAC=∠DAB﹣∠CAB=50°﹣40°=10°.故选C.【点睛】本题考查的是全等三角形的性质.掌握全等三角形的对应角相等是解题的关键.6、C【分析】根据题意易得:∠BCD=30°,然后根据30°角的直角三角形的性质先在直角△BCD中求出BC,再在直角△ABC中即可求出AB.【详解】解:Rt△ABC中,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵CD是斜边AB上的高,∴∠BCD=30°,∵BD=2cm,∴BC=2BD=4cm,∵∠ACB=90°,∠A=30°,∴AB=2BC=8cm.【点睛】本题考查的是直角三角形的性质,属于基本题型,熟练掌握30°角所对的直角边等于斜边的一半是解题关键.7、C【分析】根据加权平均数的计算公式与中位数的定义即可求解.【详解】10个家庭节水量的平均数为=0.42;第5,6个家庭的节水量为0.4,0.5,∴中位数为0.45,故选C.【点睛】此题考查了加权平均数与中位数,掌握加权平均数的计算公式是解题的关键,是一道基础题.8、D【分析】根据轴对称图形的概念对各个选项进行判断即可.【详解】A、B、C中的图案是轴对称图形,D中的图案不是轴对称图形,故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,也可以说这个图形关于这条直线(成轴)对称.9、C【分析】根据函数图形,结合选项进行判断,即可得到答案.【详解】解:、由函数图象可知,甲走完全程需要秒,乙走完全程需要秒,甲队率先到达终点,本选项错误;、由函数图象可知,甲、乙两队都走了米,路程相同,本选项错误;、由函数图象可知,在秒时,两队所走路程相等,均为米,本选项正确;、由函数图象可知,从出发到秒的时间段内,甲队的速度慢,本选项错误;故选.【点睛】本题考查函数图象,解题的关键是读懂函数图象的信息.10、C【分析】根据勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、22+32≠42,不能构成直角三角形,故选项错误;B、32+42≠62,不能构成直角三角形,故选项错误;C、52+122=132,能构成直角三角形,故选项正确;D、62+72≠112,不能构成直角三角形,故选项错误.故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断是解答此题的关键.二、填空题(每小题3分,共24分)11、6.9×10﹣1.【解析】试题分析:对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.00000069=6.9×10﹣1.考点:科学记数法.12、b>c>a.【分析】由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.13、x≤1.【解析】解:依题意得:1﹣x≥2.解得x≤1.故答案为:x≤1.14、1【解析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为=1,故答案为:1.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.15、10【分析】过点D作DE⊥AB与点E,根据角平分线的性质可得CD=DE,再用三角形面积公式求解.【详解】解:如图,过点D作DE⊥AB与点E,∵,∴BD平分∠ABC,∵∠BCD=90°,∴CD=DE=5,∵AB=4,∴△ABD的面积=×AB×DE=×4×5=10.故答案为:10.【点睛】本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.16、【分析】先求出介于哪两个整数之间,即可求出它的整数部分,再用减去它的整数部分求出它的小数部分,再代入即可.【详解】∵,∴=,∴,∴,∴.【点睛】此题考查的是带根号的实数的整数部分和小数部分的求法,找到它的取值范围是解决此题的关键.17、≠2【解析】x,所以x≠2.点睛:分式有意义:,分式无意义:,分式值为0:,是分式部分易混的3类题型.18、【解析】直接利用已知将原式变形进而得出x,y之间的关系进而得出答案.【详解】,,故2y=x,则,故答案为:.【点睛】本题考查了比例的性质,正确将原式变形是解题关键.三、解答题(共66分)19、(1),14;(2)a的值为5.5或3.25或2.5;(3).【解析】(1)先利用待定系数法求出直线AB的解析式,再令求出点D的坐标,从而可得出CD的长;(2)先利用点坐标求出BD、AD的长,分点P在CD上和点P在CD延长线上,再利用三角形全等的性质求出DP、DQ的长,最后利用线段的和差即可得;(3)如图4(见解析),连结BP,过点Q作,交延长线于点E,先求出CP的长,再根据点B的坐标可推出,然后可求出BP的长,从而可求出,根据点的对称性可得,又根据平行线的性质可得,最后根据等腰三角形的性质、一次函数的性质即可求出答案.【详解】(1)设直线AB的解析式为把点代入得解得故直线AB的解析式为令,代入得则点D的坐标为故;(2)①如图1,当点P在CD上时,点P只能与点B是对应点则解得;②如图2,当点P在CD延长线上,并且点P与点B是对应点时则解得;③如图3,当点P在CD延长线上,并且点P与点C是对应点时则解得;综上,a的值为5.5或3.25或2.5;(3)如图4,连结BP,过点Q作,交延长线于点E,与点B的纵坐标相等,即∵点P与点关于直线BC对称是等腰直角三角形,且设,则点Q的坐标为,即将代入得,解得故点Q的坐标为.【点睛】本题考查了利用待定系数法求函数的解析式、三角形全等的性质、点的对称性、等腰三角形的性质等知识点,较难的是题(3),通过作辅助线,推出是解题关键.20、(1);(2)【分析】(1)根据整式的乘法运算法则即可运算;(2)先提公因式-3y,再利用完全平方工时即可因式分解.【详解】解:(1)原式==(2)==【点睛】本题考查了整式的乘法运算及因式分解,解题的关键是掌握整式的乘法运算法则,提公因式法与公式法进行因式分解.21、见解析【分析】由等腰三角形的性质得出∠B=∠C,证明△ACE≌△ABF(SAS),即可得出结论.【详解】证明:∵AB=AC,∴∠B=∠C,在△ACE和△ABF中,,∴△ACE≌△ABF(SAS),∴AE=AF.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质,熟练掌握等腰三角形的性质和证明三角形全等是解题的关键.22、(1)①见解析;②DE=;(2)DE的值为3或3【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=1.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中,DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=,∴DE=;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=3;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=1,∴DE=3,综上所述,DE的值为3或3.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.23、(1),;(2).【解析】(1)把点C的横坐标代入正比例函数解析式,求得点C的纵坐标,然后把点C的坐标代入一次函数解析式即可求得m的值,从而得到一次函数的解析式,则易求点A、B的坐标,然后根据勾股定理即可求得AB;
(2)由得到OQ的长,即可求得Q点的坐标.【详解】(1)∵点C在直线上,点C的横坐标为−3,∴点C坐标为又∵点C在直线y=mx+2m+3上,∴∴∴直线AB的函数表达式为令x=0,则y=6,令y=0,则,解得x=−4,∴A(−4,0)、B(0,6),∴(2)∵,∴∴OQ=2,∴点Q坐标为(0,2).【点睛】考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.24、(1)26°(2)12°(3)【分析】(1)根据评价分析的定义求出∠ABC即可解决问题.(2)根据∠DAE=∠BAE−∠BAD,求出∠BAE即可解决问题.(3)根据补角的定义即可求解.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高中地理第四章区域经济发展第2节区域工业化与城市化-以我国珠江三角洲地区为例精练含解析新人教必修3
- 2024高中生物第三章植物的激素调节第1节植物生长素的发现精练含解析新人教版必修3
- 2024高考地理一轮复习第十七单元区域经济发展考法精练含解析
- 2024高考化学一轮复习第4章非金属及其化合物第14讲氮及其化合物精练含解析
- 2024高考历史一轮复习方案专题二代中国反侵略求民主的潮流专题综合测验含解析人民版
- 2024高考地理一轮复习第一部分自然地理-重在理解第四章地表形态的塑造第14讲河流地貌的发育学案新人教版
- DB42-T 168-2024 湖北省府河流域氯化物排放标准
- 股骨粗隆间骨折-内固定失效
- (3篇)2024年幼儿园班级总结
- 项目管理人员职责
- 1《地球的表面》说课稿-2024-2025学年科学五年级上册教科版
- GB/T 44764-2024石油、石化和天然气工业腐蚀性石油炼制环境中抗硫化物应力开裂的金属材料
- 自动化招聘笔试试题及答案
- 重庆市主城四区2025届高一物理第一学期期末联考试题含解析
- 胡夹桃综合征
- 污水土地处理系统中双酚A和雌激素的去除及微生物研究
- HG-T+21527-2014回转拱盖快开人孔
- JTS-167-2-2009重力式码头设计与施工规范
- DBJ-T15-81-2022 建筑混凝土结构耐火设计技术规程
- GB/T 22849-2024针织T恤衫
- 山东省淄博市2023-2024学年高二上学期教学质量检测化学试题
评论
0/150
提交评论