版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,以正方形ABCD的中心为原点建立平面直角坐标系,点A的坐标为(2,2),则点C的坐标为()A.(2,2) B.(﹣2,2) C.(﹣2,﹣2) D.(2,﹣2)2.如图,CD⊥AB于点D,点E在CD上,下列四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,将其中两个作为条件,不能判定△ADC≌△EDB的是A.①② B.①④ C.②③ D.②④3.如图,在中,,是的平分线交于点.若,,,那么的面积是()A. B. C. D.4.下列全国志愿者服务标识的设计图中,是轴对称图形的是()A. B. C. D.5.把19547精确到千位的近似数是()A. B. C. D.6.如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15° B.30° C.45° D.60°7.如图,在正方形内,以为边作等边三角形,连接并延长交于,则下列结论不正确的是()A. B. C. D.8.下列说法正确的是()A.的平方根是 B.的算术平方根是C.的立方根是 D.是的一个平方根9.等式成立的x的取值范围在数轴上可表示为(
)A. B. C. D.10.若(x2-x+m)(x-8)中不含x的一次项,则m的值为()A.8 B.-8 C.0 D.8或-8二、填空题(每小题3分,共24分)11.如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯每平方米18元,请你帮助计算一下,铺完这个楼道至少需要____________元钱.12.如图,△AOB中,∠AOB=90°,OA=OB,等腰直角△CDF的直角顶点C在边OA上,点D在边OB上,点F在边AB上,如果△CDF的面积是△AOB的面积的,OD=2,则△AOB的面积为____.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是________(只写一个即可,不添加辅助线).14.若多项式是一个完全平方式,则的值为_________.15.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“”方向排列,如,,,,,根据这个规律,第个点的坐标为______.16.如图,将长方形纸片ABCD沿对角线AC折叠,AD的对应线段AD′与边BC交于点E.已知BE=3,EC=5,则AB=___.17.因式分解:______.18.如图,在扇形BCD中,∠BCD=150°,以点B为圆心,BC长为半径画弧交BD于点A,连接AC,若BC=8,则图中阴影部分的面积为________三、解答题(共66分)19.(10分)已知:如图,和均为等腰直角三角形,,连结,,且、、三点在一直线上,,.(1)求证:;(2)求线段的长.20.(6分)补充下列证明,并在括号内填上推理依据.已知:如图,在中,平分交于点,交于点,且,求证:.证明:,().,.(),________________.平分,(),,,________________,.().21.(6分)某广场用如图1所示的同一种地砖拼图案,第一次拼成的图案如图2所示,共用地砖4块;第2次拼成的图案如图3所示,共用地砖;第3次拼成的图案如图4所示,共用地砖,….(1)直接写出第4次拼成的图案共用地砖________块;(2)按照这样的规律,设第次拼成的图案共用地砖的数量为块,求与之间的函数表达式22.(8分)(1)计算:1﹣÷(1)先化简,再求值:(+x﹣3)÷(),其中x=﹣1.23.(8分)尺规作图:已知,在内求作一点P,使点P到A的两边AB、AC的距离相等,且PB=PA(保留作图痕迹).24.(8分)周末了,李芳的妈妈从菜市场买回来千克萝卜和千克排骨.请你通过列方程组求出这天萝卜、排骨的售价分别是多少(单位:元千克)?25.(10分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.26.(10分)如图,在平面直角坐标系中,每个小方格的边长都是1个单位长度.(1)画出关于轴对称的;(2)写出点的坐标;(3)求出的面积;
参考答案一、选择题(每小题3分,共30分)1、C【解析】A,C点关于原点对称,所以,C点坐标是(-2,-2)选C.2、C【分析】根据全等三角形的判定定理以及直角三角形全等判定定理依次进行判断即可.【详解】A:∵CD⊥AB∴∠CDA=∠BDE又∵AD=ED;②∠A=∠BED∴△ADC≌△EDB(ASA)所以A能判断二者全等;B:∵CD⊥AB∴△ADC与△EDB为直角三角形∵AD=ED,AC=EB∴△ADC≌△EDB(HL)所以B能判断二者全等;C:根据三个对应角相等无法判断两个三角形全等,所以C不能判断二者全等;D:∵CD⊥AB∴∠CDA=∠BDE又∵∠A=∠BED,AC=EB∴△ADC≌△EDB(AAS)所以D能判断二者全等;所以答案为C选项.【点睛】本题主要考查了三角形全等判定定理的运用,熟练掌握相关概念是解题关键.3、A【分析】作DE⊥AB,由角平分线性质可得DE=ED,再根据三角形的面积公式代入求解即可.【详解】过点D作DE⊥AB交AB于E,∵AD平分∠BAC,∴ED=CD=m,∵AB=n,∴S△ABC=.故选A.【点睛】本题考查角平分线的性质,关键在于通过角平分线的性质得到AB边上高的长度.4、C【分析】根据轴对称图形的概念判断即可.【详解】解:A、B、D中的图形不是轴对称图形,
C中的图形是轴对称图形,
故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5、C【分析】先把原数化为科学记数法,再根据精确度,求近似值,即可.【详解】19547=≈.故选C.【点睛】本题主要考查求近似数。掌握四舍五入法求近似数,是解题的关键.6、A【分析】先判断出AD是BC的垂直平分线,进而求出∠ECB=45°,即可得出结论.【详解】∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB-∠ECB=15°,故选A.【点睛】此题主要考查了等边三角形的性质,垂直平分线的判定和性质,等腰三角形的性质,求出∠ECB是解本题的关键.7、D【分析】根据四边形ABCD是正方形,△EMC是等边三角形,得出∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,再计算角度即可;通过做辅助线MD,得出MA=MD,MD=MN,从而得出AM=MN.【详解】如图,连接DM,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠ADC=90°,∵△EMC是等边三角形,∴BM=BC=CM,∠EMC=∠MBC=∠MCB=60°,∴∠ABM=∠MCN=30°,∵BA=BM,MC=CD,∴∠BAM=∠BMA=∠CMD=∠CDM=(180°-30°)=75°,∴∠MAD=∠MDA=15°,故A正确;∴MA=MD,∴∠DMN=∠MAD+∠ADM=30°,∴∠CMN=∠CMD-∠DMN=45°,故B正确;∵∠MDN=∠AND=75°∴MD=MN∴AM=MN,故C正确;∵∠CMN=45°,∠MCN=30°,∴,故D错误,故选D.【点睛】本题考正方形的性质、等边三角形的性质等知识,灵活应用正方形以及等边三角形的性质,通过计算角度得出等腰三角形是关键.8、D【分析】依据平方根,算数平方根,立方根的性质解答即可.【详解】解:A.25的平方根有两个,是±5,故A错误;B.负数没有平方根,故B错误;C.0.2是0.008的立方根,故C错误;D.是的一个平方根,故D正确.故选D.【点睛】本题主要考查了平方根,算术平方根,立方根的性质.平方根的性质:①正数有两个平方根,它们互为相反数;②0的平方根为0;③负数没有平方根.算术平方根的性质:①正数的算数平方根是正数;②0的算数平方根为0;③负数没有算数平方根.立方根的性质:①任何数都有立方根,且都只有一个立方根;②正数的立方根是正数,负数的立方根是负数,0的立方根是0.9、B【分析】根据二次根式有意义的条件即可求出的范围.【详解】由题意可知:,解得:,故选.【点睛】考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.10、B【解析】(x2-x+m)(x-8)=由于不含一次项,m+8=0,得m=-8.二、填空题(每小题3分,共24分)11、612.【分析】先由勾股定理求出BC的长为12m,再用(AC+BC)乘以2乘以18即可得到答案【详解】如图,∵∠C=90,AB=13m,AC=5m,∴BC==12m,∴(元),故填:612.【点睛】此题考查勾股定理、平移的性质,题中求出地毯的总长度是解题的关键,地毯的长度由平移可等于楼梯的垂直高度和水平距离的和,进而求得地毯的面积.12、.【分析】首先过点F作FM⊥AO,根据等腰直角三角形的性质判定△DOC≌△CMF,得出CM=OD=2,MF=OC,然后判定△AMF是等腰直角三角形,利用面积关系,构建一元二次方程,即可得解.【详解】过点F作FM⊥AO于点M,如图:则有:∠O=∠FMC=90°,∴∠1+∠2=90°,∵等腰直角△CDF,∴CF=CD,∠DCF=90°,∴∠2+∠3=90°,∴∠1=∠3,又∵∠O=∠FMC=90°,CF=CD,∴△DOC≌△CMF(AAS),∴CM=OD=2,MF=OC,∵∠AOB=90°,OA=OB,FM⊥AO,∴△AMF是等腰直角三角形,∴AM=MF=CO,设AM=MF=CO=x,则OA=OB=2x+2,CD=CF=,由△CDF的面积是△AOB的面积的,得:()2=(2x+2)2,解得:x=1.5,∴△AOB的面积=(2x+2)2=;故答案为:.【点睛】此题主要考查等腰直角三角形以及全等三角形的判定与性质,解题关键是利用面积关系构建方程.13、∠APO=∠BPO(答案不唯一)【解析】OA=OB结合已知条件可得△AOP=≌△BOP(ASA),当∠OAP=∠OBP或∠APO=∠BPO时,利用全等三角形的判定(AAS)可得△AOP≌△BOP.解:已知点P在∠AOB的平分线上∴∠AOP=∠BOP∵OP=OP,OA=OB∴△AOP=≌△BOP.故填OA=OB.14、-5或1【解析】试题解析:∵x2-(m-1)x+9=x2-(m-1)x+32,∴(m-1)x=±2×3×x,解得m=-5或1.15、【分析】根据题意,得到点的总个数等于轴上右下角的点的横坐标的平方,由于,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为,共有个,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,右下角的点的横坐标为时,共有个,,是奇数,第个点是,第个点是,故答案为:.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律.16、1【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=1,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB==1,故答案为:1.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.17、【分析】利用平方差公式进行因式分解.【详解】解:.故答案是:.【点睛】本题考查因式分解,解题的关键是掌握因式分解的方法.18、【分析】连接AB,判断出是等边三角形,然后根据扇形及三角形的面积公式,即可求得阴影部分的面积为:.【详解】解:连接,∵,∴是等边三角形,∴S,,∴.故答案为:.【点睛】本题考察扇形中不规则图形面积的求解,掌握扇形的面积公式是解题的关键.三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)根据等式的基本性质可得∠DAB=∠EAC,然后根据等腰直角三角形的性质可得DA=EA,BA=CA,再利用SAS即可证出结论;(2)根据等腰直角三角形的性质和勾股定理即可求出DE,从而求出EC和DC,再根据全等三角形的性质即可求出DB,∠ADB=∠AEC,从而求出∠BDC=90°,最后根据勾股定理即可求出结论.【详解】证明:(1)∵∴∠DAE-∠BAE=∠BAC-∠BAE∴∠DAB=∠EAC∵和均为等腰直角三角形∴DA=EA,BA=CA在△ADB和△AEC中∴△ADB≌△AEC(2)∵是等腰直角三角形,∴DE=,∵∴EC=,∴DC=DE+EC=3∵△ADB≌△AEC∴DB=EC=3,∠ADB=∠AEC∵∠ADB=∠ADE+∠BDC,∠AEC=∠ADE+∠DAE=∠ADE+90°∴∠BDC=90°在Rt△BDC中,【点睛】此题考查的是等腰直角三角形的性质、全等三角形的判定及性质和勾股定理,掌握等腰直角三角形的性质、全等三角形的判定及性质和利用勾股定理解直角三角形是解决此题的关键.20、三角形内角和等于;等量代换;;角平分线的定义;;内错角相等,两直线平行.【分析】由已知条件,先求出∠ABC的度数,因为DB平分∠ABC,得∠CBD=∠BDE,即可得出结论.【详解】证明:,(三角形内角和等于).,.(等量代换),,平分,(角平分线的定义),,,,.(内错角相等,两直线平行).故答案为三角形内角和等于;等量代换;;角平分线的定义;;内错角相等,两直线平行.【点睛】本题主要考查平行线判定和性质的知识,熟知平行线的判定定理是解答此题的关键.21、(1)40;(2).【分析】(1)根据拼成图案的地砖块数规律,即可得到答案;(2)根据,,,,……,进而得到与之间的函数表达式.【详解】(1)∵第一次拼成的图案,共用地砖4块;第2次拼成的图案,共用地砖;第3次拼成的图案,共用地砖,…,∴第4次拼成的图案,共用地砖.故答案是:40;(2)第1次拼成如图2所示的图案共用4块地砖,即,第2次拼成如图3所示的图案共用12块地砖,即,第3次拼成如图4所示的图案共用24块地砖,即,第4次拼成的图案共用40块地砖,即,……第次拼成的图案共用地砖:,∴与之间的函数表达式为:.【点睛】本题主要考查探究图案与数的规律,找到图案与数的规律,是解题的关键.22、(1);(1),2.【分析】(1)根据分式的混合运算顺序和运算法则计算可得;(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【详解】解:(1)原式=1﹣=1﹣=﹣=;(1)原式===x(x﹣3),当x=﹣1时,原式=(﹣1)×(﹣1﹣3)=2.【点睛】考核知识点:分式化简求值.理解分式的运算法则是关键.23、作图见解析.【分析】由P到∠A的两边AB、AC的距离相等,根据角平分线的性质得到P点在∠CAB的角平分线上,由PB=PA,根据垂直平分线的性质得到点P在AB的垂直平分线上.【详解】解:作∠CAB的角平分线AD,再作AB的垂直平分线MN,
AD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度国际能源项目员工管理与劳动技术服务协议3篇
- 高中课程衔接与适应培训计划
- 八年级历史上册 第二单元 近代化的早期探索与民族危机的加剧 第5课 甲午中日战争与“瓜分”中国狂潮教学实录 新人教版
- 2024年标准版股权转让合同模板版B版
- 2024年版基础设施建设合作协议书
- 第六单元写作《有创意地表达》教学实录-2023-2024学年统编版语文九年级下册
- 2025版高考英语一轮总复习第一部分模块知识复习选择性必修第三册Unit5Poems
- 2024-2025学年九年级英语下册 Module 2 Education Unit 1 They dont sit in rows教学实录 (新版)外研版
- 七年级地理上册 2.2《世界的海陆分布》教学实录 湘教版
- 九年级化学上册 5.4 古生物的“遗产”-化石燃料教学实录2 (新版)粤教版
- 七上语文期末考试复习计划表
- 毕节市财政局国库科工作运行规程
- 一年级语文课堂中的教学游戏
- 东汽600MW机组润滑油系统说明书
- 承插型盘扣式支架施工技术总结
- 震雄注塑机Ai_01操作说明书(中文)
- 四年级上学期家长会PPT课件.ppt
- 电话机和对讲机装配实习报告
- 广州美术学院关于本科毕业论文、毕业创作(设计)工作的若干规定
- 压力管道元件产品合格证
- 1000以内自然数数数表
评论
0/150
提交评论