LTE网规网优基础知识问答_第1页
LTE网规网优基础知识问答_第2页
LTE网规网优基础知识问答_第3页
LTE网规网优基础知识问答_第4页
LTE网规网优基础知识问答_第5页
已阅读5页,还剩82页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、基本概念篇1、为什么要从3G向LTE演进?LTE(LongTermEvolution)是指3GPP组织推行的蜂窝技术在无线接入方面的最新演进,对应核心网的演进就是SAE(SystemArchitectureEvolution)。之所以需要从3G演进到LTE,是由于近年来移动用户对高速率数据业务的要求,同时新型无线宽带接入系统的快速发展,如WiMax的出现,给3G系统设备商和运营商造成了很大的压力。在LTE系统设计之初,其目标和需求就非常明确:降低时延、提高用户传输数据速率、提高系统容量和覆盖范围、降低运营成本:

显著的提高峰值传输数据速率,例如下行链路达到100Mb/s,上行链路达到50Mb/s;

在保持目前基站位置不变的情况下,提高小区边缘比特速率;

显著的提高频谱效率,例如达到3GPPR6版本的2~4倍;

无线接入网的时延低于10ms;

显著的降低控制面时延(从空闲态跃迁到激活态时延小于100ms(不包括寻呼时间));

支持灵活的系统带宽配置,支持1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz带宽,支持成对和非成对频谱;

支持现有3G系统和非3G系统与LTE系统网络间的互连互通;

更好的支持增强型MBMS;

系统不仅能为低速移动终端提供最优服务,并且也应支持高速移动终端,能为速度>350km/h的用户提供100kbps的接入服务;

实现合理的终端复杂度、成本、功耗;

取消CS域,CS域业务在PS域实现,如VOIP;

2、LTE扁平网络架构是什么?

LTE的接入网E-UTRAN由eNodeB组成,提供用户面和控制面;

LTE的核心网EPC(EvolvedPacketCore)由MME,S-GW和P-GW组成;

eNodeB间通过X2接口相互连接,支持数据和信令的直接传输;

S1接口连接eNodeB与核心网EPC。其中,S1-MME是eNodeB连接MME的控制面接口,S1-U是eNodeB连接S-GW的用户面接口;3、相对3G来说,LTE采用了哪些先进技术?

采用OFDM技术

OFDM(OrthogonalFrequencyDivisionMultiplexing)属于调制复用技术,它把系统带宽分成多个的相互正交的子载波,在多个子载波上并行数据传输;

各个子载波的正交性是由基带IFFT(InverseFastFourierTransform)实现的。由于子载波带宽较小(15kHz),多径时延将导致符号间干扰ISI,破坏子载波之间的正交性。为此,在OFDM符号间插入保护间隔,通常采用循环前缀CP来实现;

下行多址接入技术OFDMA,上行多址接入技术SC-FDMA(SingleCarrier-FDMA);

采用MIMO(Multiple-InputMultipleOutput)技术

LTE下行支持MIMO技术进行空间维度的复用。空间复用支持单用户SU-MIMO(Single-User-MIMO)模式或者多用户MU-MIMO(Multiple-User-MIMO)模式。SU-MIMO和MU-MIMO都支持通过Pre-coding的方法来降低或者控制空间复用数据流之间的干扰,从而改善MIMO技术的性能。SU-MIMO中,空间复用的数据流调度给一个单独的用户,提升该用户的传输速率和频谱效率。MU-MIMO中,空间复用的数据流调度给多个用户,多个用户通过空分方式共享同一时频资源,系统可以通过空间维度的多用户调度获得额外的多用户分集增益。

受限于终端的成本和功耗,实现单个终端上行多路射频发射和功放的难度较大。因此,LTE正研究在上行采用多个单天线用户联合进行MIMO传输的方法,称为Virtual-MIMO。调度器将相同的时频资源调度给若干个不同的用户,每个用户都采用单天线方式发送数据,系统采用一定的MIMO解调方法进行数据分离。采用Virtual-MIMO方式能同时获得MIMO增益以及功率增益(相同的时频资源允许更高的功率发送),而且调度器可以控制多用户数据之间的干扰。同时,通过用户选择可以获得多用户分集增益。

调度和链路自适应

LTE支持时间和频率两个维度的链路自适应,根据时频域信道质量信息对不同的时频资源选择不同的调制编码方式。

功率控制在CDMA系统中是一项重要的链路自适应技术,可以避免远近效应带来的多址干扰。在LTE系统中,上下行均采用正交的OFDM技术对多用户进行复用。因此,功控主要用来降低对邻小区上行的干扰,补偿链路损耗,也是一种慢速的链路自适应机制。

小区干扰控制

LTE系统中,系统中各小区采用相同的频率进行发送和接收。与CDMA系统不同的是,LTE系统并不能通过合并不同小区的信号来降低邻小区信号的影响。因此必将在小区间产生干扰,小区边缘干扰尤为严重。

为了改善小区边缘的性能,系统上下行都需要采用一定的方法进行小区干扰控制。目前正在研究方法有:

干扰随机化:被动的干扰控制方法。目的是使系统在时频域受到的干扰尽可能平均,可通过加扰,交织,跳频等方法实现;

干扰对消:终端解调邻小区信息,对消邻小区信息后再解调本小区信息;或利用交织多址IDMA进行多小区信息联合解调;

干扰抑制:通过终端多个天线对空间有色干扰特性进行估计和抑制,可以分为空间维度和频率维度进行抑制。系统复杂度较大,可通过上下行的干扰抑制合并IRC实现;

干扰协调:主动的干扰控制技术。对小区边缘可用的时频资源做一定的限制。这是一种比较常见的小区干扰抑制方法;

4、OFDM的基本原理OFDM也是一种频分复用的多载波传输方式,只是复用的各路信号(各路载波)是正交的。OFDM技术也是通过串/并转换将高速的数据流变成多路并行的低速数据流,再将它们分配到若干个不同频率的子载波上的子信道中传输。不同的是OFDM技术利用了相互正交的子载波,从而子载波的频谱是重叠的,而传统的FDM多载波调制系统中子载波间需要保护间隔,从而OFDM技术大大的提高了频谱利用率。

OFDM系统优点:

通过把高速率数据流进行串并转换,使得每个子载波上的数据符号持续长度相对增加,从而有效地减少由于无线信道时间弥散所带来地ISI,进而减少了接收机内均衡器地复杂度,有时甚至可以不采用均衡器,而仅仅通过插入循环前缀地方法消除ISI的不利影响。

OFDM技术可用有效的抑制无线多径信道的频率选择性衰落。因为OFDM的子载波间隔比较小,一般的都会小于多径信道的相关带宽,这样在一个子载波内,衰落是平坦的。进一步,通过合理的子载波分配方案,可以将衰落特性不同的子载波分配给同一个用户,这样可以获取频率分集增益,从而有效的克服了频率选择性衰落。

传统的频分多路传输方法是将频带分为若干个不相交的子频带来并行传输数据流,各个子信道之间要保留足够的保护频带。而OFDM系统由于各个子载波之间存在正交性,允许子信道的频谱相互重叠,因此于常规的频分复用系统相比,OFDM系统可以最大限度的利用频谱资源。

各个子信道的正交调制和解调可以分别通过采用IDFT(InverseDiscreteFourierTransform)和DFT实现,在子载波数很大的系统中,可以通过采用IFFT(InverseFastFourierTransform)和FFT实现,随着大规模集成电路技术和DSP技术的发展,IFFT和FFT都是非常容易实现的。

无线数据业务一般存在非对称性,即下行链路中的数据传输量大于上行链路中的数据传输量,这就要求物理层支持非对称的高速率数据传输,OFDM系统可以通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

OFDM系统缺点:

易受频率偏差的影响。由于子信道的频谱相互覆盖,这就对他们之间的正交性提出了严格的要求,无线信道的时变性在传输过程中造成了无线信号频谱偏移,或发射机与接收机本地振荡器之间存在频率偏差,都会使OFDM系统子载波之间的正交性遭到破坏,导致子信道间干扰(ICI,Inter-ChannelInterference),这种对频率偏差的敏感性是OFDM系统的主要缺点之一。

存在较高的峰值平均功率比。多载波系统的输出是多个子信道信号的叠加,因此如果多个信号的相位一致时,所得到的叠加信号的瞬时功率就会远远高于信号的平均功率,导致较大的峰值平均功率比(PAPR,Peak-to-AveragepowerRatio),这就对发射机内放大器的线性度提出了很高的要求,因此可能带来信号畸变,使信号的频谱发生变化,从而导致各个子信道间的正交性遭到破坏,产生干扰,使系统的性能恶化。5、

单用户MIMO和多用户MIMO的区别单用户MIMO:占用相同时频资源的多个并行的数据流发给同一个用户或从同一个用户发给基站称为单用户MIMO;如下图所示:多用户MIMO:占用相同时频资源的多个并行的数据流发给不同用户或不同用户采用相同时频资源发送数据给基站,称为多用户MIMO,也称虚拟MIMO。如下图所示:当前LTE考虑终端的实现复杂性,因此上行只支持多用户MIMO,也就是虚拟MIMO。6、LTE上行为什么要采用SC-FDMA技术?考虑到多载波带来的高PAPR会影响终端的射频成本和电池寿命。最终3GPP决定在上行采用单载波频分复用技术SC-FDMA中的频域实现方式DFT-S-OFDM。可以看出与OFDM不同的是在调制之前先进行了DFT的转换,这样最终发射的时域信号会大大减小PAPR。这种处理的缺点就是增加了射频调制的复杂度。实际上DFT-S-OFDM可以认为是一种特殊的多载波复用方式,其输出的信息同样具有多载波特性,但是由于其有别于OFDM的特殊处理,使其具有单载波复用相对较低的PAPR特性。7、为什么说OFDM技术容易和MIMO技术结合?MIMO技术的关键是有效避免天线之间的干扰,以区分多个并行数据流。众所周知,在水平衰落信道中可以实现更简单的MIMO接收。而在频率选择性信道中,由于天线间干扰和符号间干扰混合在一起,很难将MIMO接收和信道均衡分开处理。如果采用将MIMO接收和信道均衡混合处理的MIMO接收均衡的技术,则接收机会比较复杂。因此,由于每个OFDM子载波内的信道(带宽只有15KHz)可看作水平衰落信道,MIMO系统带来的额外复杂度可以控制在较低的水平(随天线数量呈线性增加)。相对而言,单载波MIMO系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO技术的应用。8、LTEFDD和TDD的帧结构是什么?

LTEFDD的帧结构如下图所示,帧长10ms,包括20个时隙(slot)和10个子帧(subframe)。每个子帧包括2个时隙。LTE的TTI为1个子帧1ms。

LTETDD的帧结构如下图所示,帧长10ms,分为两个长为5ms的半帧,每个半帧包含8个长为0.5ms的时隙和3个特殊时隙(域):DwPTS(DownlinkPilotTimeSlot)、GP(GuardPeriod)和UpPTS(UplinkPilotTimeSlot)。DwPTS和UpPTS的长度是可配置的,但是DwPTS、UpPTS和GP的总长度为1ms。子帧1和6包含DwPTS,GP和UpPTS;子帧0和子帧5只能用于下行传输。支持灵活的上下行配置,支持5ms和10ms的切换点周期。9、LTE中RB、RE和子载波的概念子载波:LTE采用的是OFDM技术,不同于WCDMA采用的扩频技术,每个symbol占用的带宽都是3.84M,通过扩频增益来对抗干扰。OFDM则是每个Symbol都对应一个正交的子载波,通过载波间的正交性来对抗干扰。协议规定,通常情况下子载波间隔15khz,NormalCP(CyclicPrefix)情况下,每个子载波一个slot有7个symbol;ExtendCP情况下,每个子载波一个slot有6个symbol。下图给出的是常规CP情况下的时频结构,从竖的的来看,每一个方格对应就是频率上一个子载波。RB(ResourceBlock):频率上连续12个子载波,时域上一个slot,称为1个RB。如下图左侧橙色框内就是一个RB。根据一个子载波带宽是15k可以得出1个RB的带宽为180kHz。RE(ResourceElement):频率上一个子载波及时域上一个symbol,称为一个RE,如下图右下角橙色小方框所示。10、LTE中CP的概念和作用CP(CyclicPrefix)中文可译为循环前缀,它包含的是OFDM符号的尾部重复,如下面第一个图的红圈内所示。CP主要用来对抗实际环境中的多径干扰,不加CP的话由于多径导致的时延扩展会影响子载波之间的正交性,造成符号间干扰。下图分别给出了LOS、多径时延扩展小于CP长度以及多径时延扩展大于CP长度的情况,可以看出在如果多径时延扩展大于CP长度时,同样会造成符号间串扰。协议中规定的CP长度已经根据实际情况进行考虑,可以满足绝大多数情况。其它情况会采用扩展CP来容忍更大的时延扩展。11、LTE中支持的带宽及表示方式LTE的工作带宽最小可以工作在1.4M,最大工作带宽可以是20M。协议和实际产品的配置都是通过RB个数来对带宽进行配置的。对应关系如下表所示:大家可能觉得RB个数乘以180k和实际带宽还是有些差距,这个主要由于OFDM信号旁瓣衰落较慢,通常需要留10%的保护带。和WCDMA占用5M带宽但实际信号带宽只有3.84M的原因是类似的。如下图所示,假设20M带宽情况下,则配置带宽为100RB,对应18M,但信道带宽是20M12、衡量LTE覆盖和信号质量基本测量量是什么?下面这几个是LTE中最基本的几个测量量,是日常测试中关注最多的。RSRP(ReferenceSignalReceivedPower)主要用来衡量下行参考信号的功率,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别;RSRQ(ReferenceSignalReceivedQuality)主要衡量下行特定小区参考信号的接收质量。和WCDMA中CPICHEc/Io作用类似。二者的定义也类似,RSRQ=RSRP*RBNumber/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的。RSSI(ReceivedSignalStrengthIndicator)指的是手机接收到的总功率,包括有用信号、干扰和底噪,和UMTS中的RSSI概念是一致的;SINR(Signal-to-InterferenceplusNoiseRatio)也就是信号干扰噪声比,顾名思义就是信号能量除以干扰加噪声的能量;从上面的定义很容易看出对于RSRQ和SINR来说,二者的差别就在于分母一个包含自身、干扰信号及底噪,另外一个只包括干扰和噪声。二、物理层篇1、LTE有哪些上行和下行物理信道及物理信道和物理信号的区别物理信道:对应于一系列RE的集合,需要承载来自高层的信息称为物理信道;如PDCCH、PDSCH等。物理信号:对应于物理层使用的一系列RE,但这些RE不传递任何来自高层的信息,如参考信号(RS),同步信号。下行物理信道:

PDSCH:PhysicalDownlinkSharedChannel(物理下行共享信道)。主要用于传输业务数据,也可以传输信令。UE之间通过频分进行调度,

PDCCH:PhysicalDownlinkControlChannel(物理下行控制信道)。承载导呼和用户数据的资源分配信息,以及与用户数据相关的HARQ信息。

PBCH:PhysicalBroadcastChannel(物理广播信道)。承载小区ID等系统信息,用于小区搜索过程。

PHICH:PhysicalHybridARQIndicatorChannel(物理HARP指示信道),用于承载HARP的ACK/NACK反馈。

PCFICH:PhysicalcontrolFormatIndicatorChannel(物理控制格式指示信道),用于承载控制信息所在的OFDM符号的位置信息。

PMCH:PhysicalMulticastchannel(物理多播信道),用于承载多播信息下行物理信号:

RS(ReferenceSignal):参考信号,通常也称为导频信号;

SCH(PSCH,SSCH):同步信号,分为主同步信号和辅同步信号;上行物理信道:

PRACH:PhysicalRandomAccessChannel(物理随机接入信道)承载随机接入前导

PUSCH:PhysicalUplinkSharedChannel(物理上行共享信道)承载上行用户数据。

PUCCH:PhysicalUplinkControlChannel(物理上行共享信道)承载HARQ的ACK/NACK,调度请求,信道质量指示等信息。上行物理信号:

RS:参考信号;2、LTE中同步信号的作用及结构是什么?

LTE同步信号由主同步信号(P-SCH)和辅同步信号(S-SCH)组成。其中主同步信号用于小区组内ID侦测,符号timing对准,频率同步;辅同步信号用于小区组ID侦测,帧timing对准,CP长度侦测。因此捕获了主同步信号和辅同步信号就可以获知物理层小区ID信息,同时得到系统的定时同步和频率同步信息。

在频域上占用中间的6个RB,共72个子载波。

P-SCH在时域上占用0号和5号子帧第一个slot的最后一个Symbol,S-SCH占用0号和5号子帧第一个slot的倒数第二个Symbol。

同步信号结构如下:3、下行参考信号RS的基本概念下行RS(ReferenceSignal)参考信号,通常也称为导频信号。和3G中导频信号的作用是一样的,主要包括:1.

下行信道质量测量;2.

下行信道估计,用于UE端的相干检测和解调;3.

小区搜索;参考信号有三种类型:

小区特定参考信号,一般不特别说明,参考信号指的都是小区特定参考信号。

MBSFN(MultimediaBroadcastSingleFrequencyNetwork)参考信号,与MBSFN传输关联MBSFN参考信号仅在分配给MBSFN传输的子帧传输。MBSFN导频序列仅用于扩展CP的情况。

UE特殊参考信号。顾名思义,这类参考信号只针对特定UE有效。下图给出了单天线、两天线及四天线在常规CP配置情况下的RS信号分布示意图。从单天线的情况可以看出,RS是时域频域错开分布,这样更有利于进行精确信道估计。对于双天线和四天线来说,每个天线上的参考信号图案都不相同,但各个天线占用的RE都不能用于数据传输。例如双天线情况下,第一个天线的某些RE正好对应第二个天线的RS图案,那么这些RE在实际中必须空在那里,不能用来传输数据,反之亦然。4、物理广播信道PBCH的基本概念PBCH:PhysicalBroadcastChannel(物理广播信道)。承载小区ID等系统信息,用于小区搜索过程。BCH的传输时间间隔(TTI)为40ms,即每个广播信道传输块为40ms;并且PBCH中包含了下行天线配置信息。在时频上占用0号子帧符号7、8、9、10中间的6个RB(即0号子帧1号时隙的前4个符号的6个RB)。如下图所示5、LTE中RGE和CCE的概念REG是ResourceElementGroup的缩写,一个REG包括4个连续未被占用的RE。REG主要针对PCFICH和PHICH速率很小的控制信道资源分配,提高资源的利用效率和分配灵活性。如下图左边两列所示,除了RS信号外,不同颜色表示的就是REG。CCE是ControlChannelElement的缩写,每个CCE由9个REG组成,之所以定义相对于REG较大的CCE,是为了用于数据量相对较大的PDCCH的资源分配。每个用户的PDCCH只能占用1,2,4,8个CCE,称为聚合级别。如下图所示:6、物理控制格式指示信道PCFICH的概念PCFICH:PhysicalcontrolFormatIndicatorChannel(物理控制格式指示信道),用于动态的指示在一个子帧中有几个OFDM符号(取值范围1,2,3)用于PDCCH信道传输。PCFICH信息放置在第一个OFDM符号,为了对抗干扰,这些符号被分散到整个系统带宽进行传输,在每一个子帧的第一个符号上的4个REG(ResourceElementGroup)中传输。具体REG位置与PCI(物理小区ID)、系统带宽相关。PCFICH的4个REG是均匀的分布在小区的带宽内的。下图是一个PCFICH占用资源的例子。PCFICH映射后的资源图7、物理下行控制信道PDCCH的基本概念PDCCH:PhysicalDownlinkControlChannel(物理下行控制信道)。主要用于承载下行控制信息(DCI:DownlinkControlInformation)。DCI主要有以下几种:Format0:用于传输PUSCH调度授权信息;Format1:用于传输PDSCH单码字调度授权信息;Format1A:是Format1的压缩模式;Format1B:包含预编码信息的Format1压缩模式;Format1C:是Format1的紧凑压缩(VeryCompact)模式;Format1D:包含预编码信息和功率偏置信息的Format1压缩模式;Format2:闭环空分复用模式UE调度;Format2A:开环空分复用模式UE调度;Format3:用于传输多用户TPC命令,针对PUSCH或PUCCH,每个用户2bit,多用户联合编码。Format3A:用于传输多用户TPC命令,针对PUSCH或PUCCH,每个用户1bit,多用户联合编码。一个物理控制信道在一个或多个连续的控制信道单元(CCEs)上传输。LTE协议定义了4中PDCCH格式,每种格式PDCCH使用的CCE数目不同,传输的比特数也不相同,使用何种PDCCH格式由高层配置。PDCCH的映射遵循先时域再频域的映射原则,如下图所示(里面数字是REG的编号):8、物理下行共享信道PDSCH的基本概念PDSCH:PhysicalDownlinkSharedChannel(物理下行共享信道)。主要用于传输业务数据,也可以传输信令。UE在接收PDSCH之前要在每个子帧监控PDCCH信道,并根据PDCCH信道的DCI格式解析资源分配域来获得PDSCH的实际资源分配情况。每一条PDCCH信道的资源分配域包括两部分:类型域(typefield)和实际资源分配信息。由于PDCCH存在三种资源分配类型:Type0,Type1和Type2。所以PDSCH资源分配方式包括Type0、Type1和Type2三种方式。

Type0的资源分配方式:UE的资源分配以RBG(ResourceBlockGroup)为单位,使用Bitmap指示分配给被调度UE的资源组。组的大小与系统带宽有关,如下表所示:分配示例如下图所示:

Type1的资源分配方式:使用Bitmap指示一个资源块集合中分配给被调度UE的物理资源块,该资源块为P个资源块中的一个,其中P与系统带宽有关,取值如上表所示:下图是Type1资源分配的一个示例。

Type2的资源分配方式:根据在相应的PDCCH上带有的1bit标志,决定虚拟资源块与物理资源块之间的映射关系。物理资源块的分配可以在一个资源块组到整个系统带宽之间变化。包括LVRB(LocalizedVirtualResourceBlock)连续分配RB和DVRB(DistributedVRB)跳频分配RB两种分配方式。下图是一个分配示例。9、物理HARQ指示信道PHICH的基本概念PHICH:PhysicalHybridARQIndicatorChannel(物理HARQ指示信道),用于承载HARQ的ACK/NACK反馈。多个PHICH复用映射到同样的RE资源上,组成一个PHICH组。组内PHICH之间通过不同的正交序列区分。一个PHICH信道可以用索引来唯一识别,其中是PHICH组序号,是组内的正交序列索号。PHICH的反馈时序为N+4,上行的PUSCH是否被正确接收在接收后的第四个子帧的PHICH信道中反馈给UE。每个PHICH组占用3个REG,下图是一个PHICH资源分配的例子。10、LTE下行信道处理一般需要经过哪些过程信道处理需要经过加扰、调制、层映射、预编码、RE映射、生成OFDM符号等几个步骤,见如下图所示:

加扰-编码bit的加扰,加扰将不改变bit速率

调制-将加扰bit调制为复值符号(BPSK、QPSK、16QAM或64QAM将数据流)

层映射-将复值调制符号映射到若干传输层。调制后的符号可以经过一层或多层传输,多层传输包括多层复用传输和多层分集传输,分别对应不同的处理方式

预编码-对传输层的复值符号预编码到天线口。对单天线,多天线复用、多天线分集进行不同的处理,决定每天线的符号量,预编码是多天线系统中特有的自适应技术

RE映射-映射到具体的物理资源单元。对每个RE{k,l}按照先递增k,后递增l的方式映射,被其他信息占用的RE均不能映射。

生成OFDM符号-生成每个天线口的OFDM符号11、LTE随机接入信道(PRACH)的基本概念由于终端的移动使得终端和网络之间的距离是不确定的,所以如果终端需要发送消息到网络,则必须实时进行上行同步的维持管理。PRACH的目的就是为达到上行同步,建立和网络上行同步关系以及请求网络分配给终端专用资源,进行正常的业务传输。LTE物理层在随机接入信道(PRACH)上发送接入前导序列Preamble,Preamble由长度为的CP循环前缀和长度为的序列部分组成,如下图所示。参数和的取值取决于帧结构和随机接入的配置。LTE中支持5种Preamble格式,每种Preamble格式对应的CP长度和接入序列长度不同,如下表所示:不同前导格式对应的小区接入半径不同,其中格式4只适用于TDD模式。在时域中,随机接入的Preamble为子帧的整数倍;在频域上,接入Preamble占据了6个RB的带宽,共1.08MHz。12、物理上行共享信道PUSCH的基本概念PUSCH:PhysicalUplinkSharedChannel(物理上行共享信道)。主要用于承载上层数据信息。PUSCH处理过程包括加扰、调制比特数据映射、DFT变换处理、映射复数据到分配的时频域资源、IFFT变换处理生成时域信号等过程,见下图所示:下图给出上行各信道的时频结构图。13、上行控制信道(PUCCH)的基本概念PUCCH:PhysicalUplinkControlChannel(物理上行共享信道)。用于承载HARQ的ACK/NACK,调度请求,信道质量指示等信息。PUCCH信道的频率资源位于带宽的两端见下表时频结构图中两端的蓝色区域),并在两个时隙间跳频。

根据应用场景及调制方式的不同,PUCCH信道分为6种格式,见下表所示:14、上行导频信号RS的简介在LTE系统中二进制数据比特一般以PSK或者QAM等调制方式调制到相应的子载波上,为了在接收端进行数据恢复,需要获得调制值的参考相位和幅度才能进行正确的解调。在实际系统中,由于载波频率偏移、定时偏差以及信道的频率选择性衰落等的影响,信号会受到破坏,导致相位偏移和幅度变化等。为了准确恢复信号,接收端需要对接收信号进行相干检测。根据相干检测的基本原理首先利用一组导频序列(参考序列)获得无线系统的信道估计,然后通过信道估计得到LTE系统中OFDM符号子载波的参考相位和幅度。上行的导频信号就是用于E-UTRAN与UE的同步和上行信道估计。上行参考信号分为两类:

解调参考信号DMRS(DemodulationReferenceSignal):PUSCH和PUCCH传输时的导频信号。由于上行采用SC-FDMA,每个UE只占用系统带宽的一部分,DMRS只在相应的PUSCH和PUCCH分配的带宽中传输。DMRS在时隙中的位置根据伴随的PUSCH和PUCCH的不同格式有所差异。

Sounding参号信号SRS(SoundingReferenceSignal):无PUCCH和PUSCH传输时的导频信号。SoundingRS的带宽比单个UE分配到的带宽要大,目的是为eNodeB作全带宽的上行信道估计提供参考。SoundingRS在每个子帧的最后一个符号发送,周期/带宽可以配置,SRS可以通过系统调度由多个UE发送。15、UE上报的RI、PMI及CQI含义RI(RankIndication);RANK指示。RANK为MIMO方案中天线矩阵中的秩。表示N个并行的有效的数据流。PMI(Pre-codingmatrixIndication)预编码矩阵指示。预编码是多天线系统中的一种自适应技术,即根据信道的状态信息(CSI),在发射端自适应的改变预编码矩阵,起到改变信号经历的信道的作用。在收发两端均存储一套包含若干个预编码矩阵的码书,这样接收机可以根据估计出的信道矩阵和某一准则选择其中一个预编码矩阵,并将其索引值和量化后的信道状态信息反馈给发送端;在下一个时刻,发送端采用新的预编码矩阵,并根据反馈回的信道状态量化信息为码字确定编码和调制方式。

CQI(ChannelQualityIndicator)信道质量指示。指满足某种性能(10%的BLER)时对应一个信道质量的索引值(包括当前的调制方式,编码速率及效率等信息),CQI索引越大,编码效率越高。和HSDPA中CQI的含义是一样的,只不过,在LTE中,CQI是4bit,而在HSDPA情况下,CQI是5bit。16、LTE物理信道、传输信道及逻辑信道映射

对于上行来说,逻辑信道公共控制信道CCCH、专用控制信道DCCH以及专用业务信道DTCH都映射到上行共享信道UL-SCH,对应的物理信道为PUSCH。上行传输信道RACH对应的物理信道为PRACH。

对于下行来说,逻辑信道寻呼控制信道PCCH对应的传输信道为PCH,对应物理信道为PDSCH承载;逻辑信道BCCH映射到传输信道分为两部分,一部分映射到BCH,对应物理信道PBCH,主要是承载MIB信息,另一部分映射到DL-SCH,对应物理信道PDSCH,承载其它系统消息。CCCH、DCCH、DTCH、MCCH(MulticastControlChannel)都映射到DL-SCH,对应物理信道PDSCH。MTCH(MulticastTrafficChannel)承载单小区数据时映射到DL-SCH,对应物理信道PDSCH。承载多小区数据时映射到MCH,对应物理信道PMCH。17、LTE常用协议及获取方式LTE相关协议的官方获取网址为:http://www.3GPP.org。内网没有proxy的用户可以通过openproxy来访问,具体可求助IT热线。3GPP从R8开始支持LTE,主要协议单独放在36系列里。具体网址为:/ftp/Specs/html-info/36-series.htm。常用LTE协议如下表所示:三、工具篇1、当前Probe可以支持的LTE终端类型有哪些?这些终端各支持的频段有哪些?当前probe可以支持哪些型号scanner?Probe在终端适配方面依赖于测试终端本身的开发以及数据接口开放情况,当前来看Probe只能支持华为自己的终端,具体信息如下:Probe目前还不具备任何LTEScanner支持功能,根据产品规划路标来看,预计下一个版本V2R5可以支持PCTEL/R&SScanner。终端和scanner适配进度可以关注每月定期发布的《LTE网规网优交付配套工具进展介绍》。2、LTE规划优化主打工具及配套资料从哪里可以获得?除了估算工具(原型EXCEL版本)外,LTE规划优化工具及配套发布的资料都可以到公司平台网站上下载。估算工具(原型EXCEL版本)获取途径:NTS交付:\\szxnw04-fs\GTS_LTE_RNP_F其它工具及配套资料获取途径:3、LTE这些工具的License如何获取?按照License用途可分为内部使用和外部商用,其获取方式不同,获取方式如下所示四、规划优化篇1、LTE网络详细规划设计的流程是什么?与其他制式网络规划设计类似,包括信息搜集、预规划、详细规划及小区规划;LTE小区规划主要关注频率规划、小区ID规划、TA规划、PCI规划、邻区规划、X2规划及PRACH规划:LTE系统网络中,位于小区边缘的用户由于使用相同的资源,并且彼此距离比较近,相互之间的干扰比较强,影响用户性能因此需要通过频率规划来尽可能的降低小区边缘用户的干扰,目前的频率规划主要指启用静态ICIC时,频率分配方案的规划;TA规划也就是跟踪区的规划,类似于2G/3G网络当中的位置区规划;PCI规划即物理小区ID规划,类似于UMTS的扰码规划或者CDMA中的PN码规划;LTE中的X2接口是指eNB之间的接口,LTE切换类型包括eNB内的切换和eNB间的切换,其中eNB间切换又分为S1切换和X2切换,要实现X2接口切换,除了必要的邻区关系,还要求完成X2接口的配置;PRACH规划也就是ZC根序列的规划,目的是为小区分配ZC根序列索引以保证相邻小区使用该索引生成的前导序列不同,从而降低相邻小区使用相同的前导序列而产生的相互干扰;LTE中的小区ID规划、邻区规划与以往2G/3G网络均比较相似2、LTE中的跟踪区是什么?LTE中的跟踪区也就是TrackingArea,简称TA,跟踪区编码称为TAC(TrackingAreaCode)。跟踪区是用来进行寻呼和位置更新的区域。类似于UMTS网络中的位置区(LAC)的概念。跟踪区的规化要确保寻呼信道容量不受限,同时对于区域边界的位置更新开销最小,而且要求易于管理。跟踪区规划作为LTE网络规划的一部分,与网络寻呼性能密切相关。跟踪区的合理规划,能够均衡寻呼负荷和TA位置更新信令流程,有效控制系统信令负荷。在LTE/SAE系统中设计跟踪区时,希望满足如下要求:对于LTE的接入网和核心网保持相同的跟踪区域的概念。当UE处于空闲状态时,核心网能够知道UE所在的跟踪区。当处于空闲状态的UE需要被寻呼时,必须在UE所注册的跟踪区的所有小区进行寻呼。在LTE系统中应尽量减少因位置改变而引起的位置更新信令。寻呼负荷确定了跟踪区的最大范围,相应的,边缘小区的位置更新负荷决定了跟踪区的最小范围,其最重要的限定条件还是MME的最大寻呼容量。3、LTE中的跟踪区边界规划的原则是什么跟踪区的规化要确保寻呼信道容量不受限,同时对于区域边界的位置更新开销最小,而且要求易于管理。考虑到我司MME产品的规格,一般的建网区域只需要一个MME管辖(华为MME管辖能力约1-2万个基站)。所以先介绍一个MME管辖场景,对于多个MME场景,可按MME分簇之后再考虑。跟踪区的规划需要遵循以下原则:跟踪区的划分不能过大或过小,TAC的最大值由MME的最大寻呼容量来决定;城郊与市区不连续覆盖时,郊区(县)使用单独的跟踪区,不规划在一个TA中;跟踪区规划应在地理上为一块连续的区域,避免和减少各跟踪区基站插花组网;寻呼区域不跨MME的原则利用规划区域山体、河流等作为跟踪区边界,减少两个跟踪区下不同小区交叠深度,尽量使跟踪区边缘位置更新成本最低;在LTE可使用的多个频段中(后期扩容的需求),跟踪区的划分即可根据频段也可根据地理位置划分。4、什么是多注册跟踪区方案?多注册TA是多个TA组成一个TA列表(TAList),这些TA同时分配给一个UE;UE在TAList间移动不需要执行TA更新。当UE附着到网络时,由网络决定分配哪些TAs给UE,UE注册到所有这些TAs中。当进入不在其所注册的TA列表中的新TA区域时,需要执行TAUpdate,网络给UE重新分配一组TAs。还可以对位于同一个TA的UEs分配不同的TAList。比如在以下场景中,可以应用多注册跟踪区方案进行网络规划和设计:日本新干线,列车长480米,时速300Km/h,容纳1300如图所示,位于每个TA的所有UEs都被分配相同的TAList,如图中位于TA2的UEs被分配的TAList为TA1和TA2,而位于TA3的UEs被分配的TAList为TA2和TA3;在每一个TA边界,所有的UEs都将在短时间内发起TAU过程,导致MME和eNB的TAU负载尖峰;以新干线为例,当列车通过TA边界时,每4.4ms就有一次TAU请求。针对上述场景面临的问题,可以采用基于UE的TAList分配策略,即MME对位于同一个TA的UEs分配不同的TAList,如REF_Ref215372087rh*MERGEFORMAT图15所示,用户被分为两组,不同组的用户分配不同的TAList,因此在TA边界将只有一半的用户需要发起TAU请求,在一定程度上保证了用户的服务质量。5、什么是PCI,LTE中PCI规划目的和原则是什么?LTE的物理小区标识(PCI)是用于区分不同小区的无线信号,保证在相关小区覆盖范围内没有相同的物理小区标识。LTE的小区搜索流程确定了采用小区ID分组的形式,首先通过SSCH确定小区组ID,再通过PSCH确定具体的小区ID。PCI在LTE中的作用有点类似扰码在W中的作用,因此规划的目的也类似,就是必须保证复用距离;协议规定物理层CellID分为两个部分:小区组ID(CellGroupID)和组内ID(IDwithinCellGroup)。目前最新协议规定物理层小区组有168个,每个小区组由3个ID组成,因此共有168*3=504个独立的CellID其中,代表小区组ID,取值范围0~167;代表组内ID,取值范围0~2目前UNET工具支持LTEPCI规划,规划效果需要进行试用评估。LTEPCI规划的原则:collision-free原则假如两个相邻的小区分配相同的PCI,这种情况下会导致重叠区域中至多只有一个小区会被UE检测到,而初始小区搜索时只能同步到其中一个小区,而该小区不一定是最合适的,称这种情况为collision,如下图所示:所以在进行PCI规划时,需要保证同PCI的小区复用距离至少间隔4层站点(参考CDMAPN码规划的经验值)以上,大于5倍的小区覆盖半径。confusion-free原则一个小区的两个相邻小区具有相同的PCI,这种情况下如果UE请求切换到ID为A的小区,eNB不知道哪个为目标小区。称这种情况为confusion,如下图所示:Confusion-free原则除了要求同PCI小区有足够的复用距离外,为了保证可靠切换,要求每个小区的邻区列表中小区PCI不能相同,同时规划后的PCI也需要满足在二层邻区列表中的唯一性。邻小区导频符号V-shift错开最优化原则LTE导频符号在频域的位置与该小区分配的PCI码相关,通过将邻小区的导频率符号频域位置尽可能地错开,可以一定程度降低导频符号相互之间的干扰,进而对网络整体性能有所提升(验证结果表明,在50%小区负载下,通过错开邻区导频符号位置,导频SINR有大约3dB左右的提升)。导频符号位置分布在规划界面上的显示如下图所示,其中不同颜色表示了不同的导频符号位置:PCI规划结果与MOD3对应关系:基于实现简单,清晰明了,容易扩展的目标,目前采用的规划原则:同一站点的PCI分配在同一个PCI组内,相邻站点的PCI在不同的PCI组内。对于存在室内覆盖场景时,需要单独考虑室内覆盖站点的PCI规划。注:目前网规推荐按照上图规划实例进行PCI规划,即:对于三扇区eNB,三个小区按照顺时针方向从正北方向开始,组内ID分别配置为0,1,2;相邻eNB分配不同的小区组ID并在整网复用。6、LTE邻区规划原则邻区规划是无线网络规划中重要的一环,其好坏直接影响到网络性能。对于LTE网络,由于是快速硬切换网络,邻区规划尤为重要,因此,好的邻区规划是保证LTE网络性能的基本要求。在LTE协议中,ANR(AutoNeighborRelation)功能已逐步成为标准协议的内容。在我司LTE产品在eRAN2.0等后续版可以实现ANR,但是初始化的邻区配置仍然需要现场工程师规划完成。与其它系统相比,LTE的切换测量有一个明显的特点,即其测量是基于频点而不是基于邻区列表的。UE根据测量配置所指示的频点测量出使用该频点的小区,然后由UE高层对测量结果进行处理得到切换候选列表发给网络,由网络选择小区发起切换。邻区列表存在的主要作用是在切换的时候提供必要的详细信息,如CGI等,因此对LTE系统来说,可以尽可能的多做邻区而不必担心由于邻区数目过多而影响测量时间和精度。具体的,对于LTE邻区规划,有以下几个基本原则:地理位置上直接相邻的小区一般要作为邻区;邻区一般都要求互为邻区,即A扇区把B作为邻区,B也要把A作为邻区。如果在某些场景下,如高速覆盖,需要设单向邻区,如A扇区可以切换到B扇区而不希望B扇区切换到A扇区,那么可以通过将A扇区加入到B扇区的Blacklist中实现。对于密集城区和普通城区,由于站间距比较近(0.3~1.0公里),邻区应该多做。目前我司产品对于同频、异频和异系统邻区分别都最大可以配置32对于市郊和郊县的基站,虽然站间距很大,但一定要把位置上相邻的作为邻区,保证能够及时切换。因为LTE的邻区不存在先后顺序的问题,而且检测周期非常短,所以只需要考虑不遗漏邻区,而不需要严格按照信号强度来排序相邻小区。7、LTE中为什么要规划X2接口,怎样进行X2接口规划?LTE网络中eNB之间通过X2接口互相连接,形成了所谓Mesh型网络,这是LTE相对原来的传统移动通信网的重大变化,产生这种变化的原因在于网络结构中没有了RNC,原有的树型分支结构被扁平化,使得基站承担更多的无线资源管理责任,需要更多地和其相邻的基站直接对话,从而保证用户在整个网络中的无缝切换。LTE中的切换类型包括eNB内的切换和eNB间的切换,其中eNB间切换又分为S1切换和X2切换。要实现X2接口切换,除了必要的邻区关系,还要求完成X2接口的配置。在实际规划中,X2口规划是基于邻区关系的,只要把邻区关系中属于不同eNB的关系找出来,就是X2关系了。在eRAN1.0版本中每个eNB最多只能配置16个X2,但实际经常会出现多于16个X2的情况,此时可以按距离排序,删除多余的,在eRAN1.1及eRAN2.0版本都扩展到可以支持32个,一般来说就不会出现此类问题了。同时ANR功能也可以自动对X2口进行维护,这样也可以解决一些X2口漏配或配置错误的问题。8、什么是ZC根序列,ZC根序列规划的目的和原则是什么?PRACH根序列是采用ZC序列作为根序列(以下简称为ZC根序列),由于每个小区前导序列是由ZC根序列通过循环移位(Ncs,cyclicshift也即零相关区配置)生成,每个小区的前导(Preamble)序列为64个,UE使用的前导序列是随机选择或由eNB分配的,因此为了降低相邻小区之间的前导序列干扰过大就需要正确规划ZC根序列索引。在FDD模式下,ZC根序列索引有838个,Ncs取值有16种,规划根据小区特性(是否高速小区)给多个小区配置ZC根序列索引和Ncs取值,从而保证相邻小区间使用该索引生成的前导序列不同。规划目的是为小区分配ZC根序列索引以保证相邻小区使用该索引生成的前导序列不同,从而降低相邻小区使用相同的前导序列而产生的相互干扰。ZC根序列索引分配应该遵循以下几个原则:应优先分配高速小区对应的ZC根序列索引,预先留出Logicalrootnumber816-837给高速小区分配。对中低速小区分配对应的ZC根序列,分配Logicalrootnumber0-815。由于ZC根序列索引个数有限,因此如果某待规划区域下的小区超过ZC根序列索引的个数,当ZC根序列索引使用完后,应对ZC根序列索引的使用进行复用,复用规则为当两个小区之间的距离超过一定范围时,两个小区可以复用同一个ZC根序列索引。高速小区与以中低速小区ZC根序列规划的方法略有区别,下面以中低速小区为例介绍ZC跟序列规划的详细方法:Step1:根据小区半径决定Ncs取值;按小区接入半径10km来考虑,Ncs取值为78;其中Ncs与小区半径的约束关系为:Step2:839/78结果向下取整结果为10,这意味着每个索引可产生10个前导序列,64个前导序列就需要7个根序列索引;Step3:这意味着可供的根序列索引为0,7,14…833共119个可用根序列索引;Step4:根据可用的根序列索引,在所有小区之间进行分配,原理类似于PCI分配方法;9、LTE网络为什么要进行频率规划?LTE系统网络中,位于小区边缘的用户由于使用相同的资源,并且彼此距离比较近,相互之间的干扰比较强,影响用户性能。因此需要通过频率规划来尽可能的降低小区边缘用户的干扰。目前主要有1×1和1×3两种频率复用方式的具体频率规划方法。1×1频率规划:指所有基站的所有小区使用一个相同的频点组网,复用度为1,以一个站为簇实现无缝的连续覆盖。目前LTE主推1×1加ICIC的软频率复用。1×3频率规划:指全网总共使用3个频点,一个基站分为3个扇区,每个扇区使用不同的频点,并以一个基站三个扇区为复用簇实现全网无缝覆盖组网。这种方式目前不推荐使用。同频组网时,位于小区边缘的用户由于使用相同的资源,并且彼此距离比较近,相互之间的干扰比较强,影响用户性能。需要采用ICIC(小区干扰协调)技术改变干扰的分布,达到提升边缘用户吞吐率的效果。采用下行静态ICIC时,需要把整个带宽分为三部分,分别作为各自小区的边缘频带进行复用;此时需要网规工程师进行频率规划;需要注意:实际中网络结构复杂,1×3的复用只能在一定程度上减轻干扰;对于插花扩容,需要进行频繁规划调整,不利于网络性能保持稳定;对于室内外协调覆盖场景,复用根本无法保证;如果要采用下行ICIC功能,推荐采用动态ICIC;否则不建议使用;10、LTE如何进行功率配比LTE网络中基站的发射功率是平均到每个子载波,即子载波均分基站的发射功率,因此,每个子载波的发射功率受到配置的系统带宽的影响(5M,10M,…),带宽越大,每个子载波的功率越小。LTE通过配置PA,PB两个功率相关参数进行功率调整,PA,PB与ρA,ρB的关系如下:其中:ρA:表征没有导频的OFDMsymbol的数据子载波功率和导频子载波功率的比值;ρB:表征有导频的OFDMsymbol的数据子载波功率和导频子载波功率的比值。业务信道功率配比(由参考信号功率计算PDSCH功率)目前推荐使用PA=-3dB,PB=1(PA,PB都通过RRC信令下发,两天线时PA=ρA,ρB使用上表计算,便可计算出PDSCH功率)的方案(即有导频的符号上,导频的功率占1/3)能够使得网络性能最优,并且能够使得TypeA和TypeB两类符号上的导频功率与业务信道功率相当。对于有特殊要求的场景,如边缘速率要求较低的农村场景,可以考虑使用PB=2或3,来增强覆盖,达到动态控制覆盖半径的目的。控制信道功率配比PDCCH,PHICH,PCFICH,PBCH,主同步信道,辅同步信道功率是通过配置与参考信号的偏移进行设置。在20Mhz带宽,2*20w天线配置的情况下,下行功率默认配置为:PA=-3,PB=1,RS=15dBm详情参见:《LTEeRAN1.1性能参数分册v1.0》11、什么是LTE的ANR(AutomaticNeighborRelationship)功能?启用ANR功能是否可以不做邻区规划?随着无线网络的不断发展,网络的管理维护面临着海量网元、异系统、多厂商等多重挑战,网络运营商维护的复杂度、技术要求和成本大幅上升。为应对这一局面,业界提出了SON(Self-OrganizationNetwork)的构想。SON包括自配置(Self-Configuration)、自优化(Self-Optimization)、自诊断(Self-Healing)等方面。邻区关系是网络自配置和自优化的重点工作,包括两大类:正常邻区关系和非正常邻区关系。非正常邻区关系存在的问题多表现在邻区漏配,PCI冲突和非正常邻区覆盖。ANR(AutomaticNeighborRelationship)功能能自动发现漏配邻区,并自动检测PCI冲突和自动评估非正常邻区覆盖,维护邻区列表的完整性和有效性,减少非正常邻区切换,从而提高网络性能,还可以避免人工操作,减少网络的运维成本。ANR功能并不能完全取代初始网络的邻区规划。因此,即使确认要开启ANR功能,在初始网络设计阶段,邻区规划工作还是必须要完成的。12、LTE的小区搜索小区搜索是UE实现与E-UTRAN下行时频同步并获得服务小区的过程。小区搜索分两个步骤: 第一步:UE解调主同步信号实现符号同步,并获得小区组内ID; 第二步:UE解调次同步信号实现符号同步,并获得小区组ID;初始化小区搜索过程如下:UE上电后开始进行初始化小区搜索,搜寻网络。一般而言,UE第一次开机时并不知道网络的带宽和频点。UE会重复基本的小区搜索过程,遍历整个频带的各个频点尝试解调同步信号。(这个过程比较耗时,但一般对此的时间要求并不严格,可以通过一些方法缩短以后的UE初始化时间,如UE储存以前的可用网络信息,开机后优先搜索这些网络)。一旦UE搜寻到可用网络并与网络实现时频同步,获得服务小区ID,即完成小区搜索。UE将解调下行广播信道PBCH,获得系统带宽,发射天线数等信息。完成以上过程后,UE解调下行控制信道PDCCH,获得网络指配给这个UE的寻呼周期。然后在固定的寻呼周期中从IDLE态醒来解调PDCCH,监听寻呼。如果有属于该UE的寻呼,则解调指定的下行共享信道PDSCH资源,接收寻呼。13、LTESON功能简述无线网络面临着海量网元、异系统、多厂商等多重挑战,网络运营维护的复杂度、技术要求和成本等在也大幅上升。为应对这一局面,业界提出了SON(Self-OrganizationNetwork)的构想。SON包括自配置(Self-Configuration)、自优化(Self-Optimization)、自诊断(Self-Healing)等方面。我司实现的主要SON特性如下表所14、LTE的KPI体系架构LTE的KPI包括RadioNetworkKPI和ServiceKPI两大类。RadioNetworkKPI关注于无线网络性能。ServiceKPI关注于终端用户感受。KPI体系架构如下图:五、随机接入篇1、LTE的切换种类根据切换触发的原因,LTE的切换可分为:基于覆盖的切换、基于负载的切换和基于业务的切换。基于覆盖的切换:用来保证移动期间业务的连续性,这是切换的最基本作用,每种通信制式都类似;基于负载的切换:考虑到实际环境中由于用户及业务分布不均匀,导致有的小区负载很重,但周边小区负载较轻,这时就可以通过基于负载的切换,把业务分担到周边负载较轻的小区,实现负荷的分担。这一点和UMTS有些不同,在UMTS中,基本不用同频负载平衡功能,更多的是通过异系统和异频负载均衡来进行负荷分担。当然,在存在异频和异系统情况下,LTE也可以支持异频异系统的负荷分担功能。基于业务的切换:假设UMTS和LTE共存,为了保证LTE系统为高速率数据业务服务,可以采用基于业务切换的功能,把语音用户切换到UMTS网络。这个功能在UMTS中也支持,可以把语音用户切换到GSM,而UMTS主要提供数据业务功能。根据切换间小区频点不同与小区系统属性不同,可以分为:同频切换、异频切换、异系统切换(协议支持向UMTS、GSM/GPRS/EDGE以及CDMA2000/EvDo的切换)。2、LTE中有哪些类型测量报告?LTE主要有下面几种类型测量报告:EventA1(Servingbecomesbetterthanthreshold):表示服务小区信号质量高于一定门限,满足此条件的事件被上报时,eNodeB停止异频/异系统测量;类似于UMTS里面的2F事件;EventA2(Servingbecomesworsethanthreshold):表示服务小区信号质量低于一定门限,满足此条件的事件被上报时,eNodeB启动异频/异系统测量;类似于UMTS里面的2D事件;EventA3(Neighbourbecomesoffsetbetterthanserving):表示同频邻区质量高于服务小区质量,满足此条件的事件被上报时,源eNodeB启动同频切换请求;EventA4(Neighbourbecomesbetterthanthreshold):表示异频邻区质量高于一定门限量,满足此条件的事件被上报时,源eNodeB启动异频切换请求;EventA5(Servingbecomesworsethanthreshold1andneighbourbecomesbetterthanthreshold2):表示服务小区质量低于一定门限并且邻区质量高于一定门限;类似于UMTS里的2B事件;EventB1(InterRATneighbourbecomesbetterthanthreshold):表示异系统邻区质量高于一定门限,满足此条件事件被上报时,源eNodeB启动异系统切换请求;类似于UMTS里的3C事件;EventB2(Servingbecomesworsethanthreshold1andinterRATneighbourbecomesbetterthanthreshold2):表示服务小区质量低于一定门限并且异系统邻区质量高于一定门限,类似于UMTS里进行异系统切换的3A事件。3、LTE同频切换触发判决条件是什么?LTE同频切换通过A3事件进行触发,即邻区质量高于服务小区一定偏置。参照3GPP36.331规定的A3事件的判决公式为:触发条件:Mn+Ofn+Ocn–Hys>Ms+Ofs+Ocs+Off;取消条件:Mn+Ofn+Ocn+Hys﹤Ms+Ofs+Ocs+Off;其中:Mn是邻区测量结果;Ofn是邻区的特定频率偏置;Ocn是邻区的特定小区偏置,也即CIO。该值不为0,此参数在测量控制消息中下发。eNodeB将根据小区负载情况临时修改邻区与服务小区的CIO,触发基于负载的同频切换;Ms是服务小区的测量结果;Ofs是服务小区的特定频率偏置;Ocs是服务小区的特定小区偏置;Hys是迟滞参数;Off是A3事件的偏置参数,用于调节切换的难易程度,取正值时增加事件触发的难度,延迟切换;取负值时,降低事件触发的难度,提前进行切换;触发A3事件的测量量可以是RSRP或RSRQ;下图给出了A3事件触发过程中的一个示意图。4、LTE同频切换的信令流程LTE同频切换可分为:eNodeB内切换;同MME内异eNodeB通过X2切换;同MME内异eNodeB通过S1口切换;跨MME异eNodeB通过X2口切换;跨MME异eNodeB通过S1口切换。同MME异eNodeB间的同频切换信令流程如下:在无线承载建立时,源eNodeB下发RRCConnectionReconfiguration至UE,其中包含MeasurementConfiguration消息,用于控制UE连接态的测量过程;UE根据测量结果上报MeasurementReport;源eNodeB根据测量报告进行切换决策;当源eNodeB决定切换后,源eNodeB发布HandoverRequest消息给目标eNodeB,通知目标eBodeB准备切换;目标eNodeB进行准入判决,若判断为资源准入,再由目标eNodeB根据EPS(EvolvedPacketSysytem)的QoS信息执行准入控制;目标eNodeB准备切换并对源eNodeB发送HandoverRequestAcknowledge消息;源eNodeB下发RRCConnectionReconfiguration包含mobilitycontrolInformation至UE,指示切换开始;UE进行目标eNodeB的随机接入过程,完成UE与目标eNodeB之间的上行同步;当UE成功接入目标小区时,UE发送RRCConnectionReconfigurationComplete给目标eNodeB,指示切换流程已经结束,目标eNodeB可以发送数据给UE了;执行下行路径数据转换过程;目标eNodeB通过发送UEContextRelease消息通知源eNodeB切换成功,并触发源eNodeB的资源释放;收到UEContextRelease消息,源eNodeB将释放UE上下文相关的无线资源与控制面资源,至此切换结束。下图是同MME异eNodeB间的同频切换信令流程图。对于无X2接口的同MME的异eNodeB切换,上图中两eNodeB间的交互信令以及缓存的转发数据通过间接通道S1接口进行传输;对于有X2接口的跨MME的异eNodeB切换,上图中两eNodeB间的交互信令将由S1接口和核心网间接传输,数据转发由X2接口进行;对于无X2接口的跨MME的异eNodeB切换,上图中两eNodeB间的交互信令以及转发数据将通过S1接口以及核心网间接进行传输。5、LTE的测量GAP介绍测量GAP就是让UE离开当前的频点到其它频点测量的时间段,主要用于异频异系统测量。由于UE通常都只有一个接收机,同一时刻只能在一个频点上接收信号。在进行异频异系统切换之前,首先要进行异频异系统测量。在3G里这种情况称作起压模。其实这二者道理是一样的,都是留出一段时间让UE去其它频点进行测量,不同的是对于3G,在压模情况下,采用扩频因子减半和高层调度的方式来避免对业务的影响,在LTE中则是通过良好的调度设计来避免。当异频或异系统测量被触发后,eNodeB将下发测量GAP相关配置,UE按照eNodeB的配置指示启动测量GAP,如下图所示。当基于覆盖或基于业务的测量GAP同时存在时,eNodeB会根据不同的触发原因,记录这些不同的测量,这些不同的测量成为测量GAP成员。测量GAP的成员可共用测量GAP配置。只有当测量GAP的成员全部停止时,UE才会停止测量GAP。LTE测量GAP图示如下:6、LTE中有那些场景触发随机接入?随机接入是UE开始与网络通信之前的接入过程,由UE向系统请求接入,收到系统的响应并分配随机接入信道的过程。随机接入的目的是建立和网络上行同步关系以及请求网络分配给UE专用资源,进行正常的业务传输。在LTE中,以下场景会触发随机接入:场景1:初始RRC连接建立,当UE从空闲态转到连接态时,UE会发起随机接入。场景2:RRC连接重建,当无线链接失败后,UE需要重新建立RRC连接时,UE会发起随机接入。场景3:当UE进行切换时,UE会在目标小区发起随机接入。场景4:下行数据到达,当UE处于连接态,eNodeB有下行数据需要传输给UE,却发现UE上行失步状态(eNodeB侧维护一个上行定时器,如果上行定时器超时,eNodeB没有收到UE的sounding信号,则eNodeB认为UE上行失步),eNodeB将控制UE发起随机接入。场景5:上行数据到达,当UE处于连接态,UE有上行数据需要传输给eNodeB,却发现自己处于上行失步状态(UE侧维护一个上行定时器,如果上行定时器超时,UE没有收到eNodeB调整TA的命令,则UE认为自己上行失步),UE将发起随机接入。7、LTE的随机接入基本流程1、LTE的随机接入分为竞争的随机接入和非竞争的随机接入。1)基于竞争的随机接入接入前导由UE产生,不同UE产生的前导可能冲突,eNodeB需要通过竞争解决不同UE的接入(适用于触发随机接入的所有五种场景情况)。2)基于非竞争的随机接入接入前导由eNodeB分配给UE,这些接入前导属于专用前导。此时,UE不会发生前导冲突。但在eNodeB的专用前导用完时,非竞争的随机接入就变成基于竞争的随机接入(仅适用于触发随机接入的场景3、场景4两种情况)。2、随机接入的基本流程如下:1)UE将自身的随机接入次数置为1。2)UE获得小区的PRACH配置。 基于竞争的随机接入。UE读取系统消息SIB2中的Prach-ConfigurationIndex消息得到小区PRACH配置。 基于非竞争的随机接入。由eNodeB通过RRC信令告知UE小区的PRACH配置。3)UE向eNodeB上报随机接入前导。4)eNodeB给UE发过随机接入响应。3、基于竞争的随机接入基于竞争的随机接入,接入前导由UE产生,不同UE产生前导可以冲突,eNodeB需要通过竞争解决不同UE的接入。基于竞争的随机接入流程图:4、基于非竞争的随机接入与基于竞争的随机接入过程相比,基于非竞争的接入过程最大差别在于接入前导的分配是由网络侧分配的,而不是由UE侧产生的,这样也就减少了竞争和冲突解决过程。但在eNodeB专用前导用完时,非竞争的随机接入就变成了基于竞争的随机接入。基于非竞争的随机接入流程图:5、随机接入回退在LTE系统中,RACH的过载控制要求相对于以前的移动通信系统要宽松,这是因为在LTE中,随机接入占用单独的时频资源,不会对其它上行信道产干扰。一般情况下RACH的碰撞概率处在一个相对较低的水平,但也会因为在一个PRACH上接入的UE过多,导致UE发生前导碰撞而接入失败。为了降低这种情况发生的可能性,LTE中引入回退机制,控制UE进行前导重传的时间。eNodeB通过随机接入响应告知UE一个回退值,UE如果需要进行前导重传,则在0到这个回退值之间随机选择一个值作为退避时间,在退避时间结束后再进行前导重传。但以下两种情况不会执行回退机制:UE在首次进行前导传输时,不会执行回退机制;基于非竞争随机接入的UE在进行前导重传时也不会执行回退机制。8、RA-RNTI和C-RNTI的区别RA-RNTI--RandomAccessRadioNetworkTemporaryIdentifier;C-RNTI–CellRadioNetworkTemporaryIdentifier;UE发起随机接入时,UE本身可能在RRC_Connected状态或者开始从RRC_IDLE状态到RRC_Connected的迁移。对于前者网络侧已经为UE分配了固定的C-RNTI,而后者网络侧还未分配任何RNTI给UE。这样对于随机接入Preamble后的网络响应,在分配给UETA和ULGrant之外,还需要分配给UE相关的RNTI。考虑到UE状态的不同,网络在此时为随机接入的UE分配了RA-RNTI,并不考虑UE此时的状态。随机接入的RA-RNTI在网络侧对UEPreamble的响应时发出,UE在之后的上行消息发送中使用RA-RNTI,网络侧通过RA-RNTI识别区分不同UE发送的消息。9、LTERRC连接建立原因与UMTS类似,在RRC连接建立时,RRCConnectionRequest消息

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论