2022年湖北省武汉市华中学师范大第一附属中学八年级数学第一学期期末统考模拟试题含解析_第1页
2022年湖北省武汉市华中学师范大第一附属中学八年级数学第一学期期末统考模拟试题含解析_第2页
2022年湖北省武汉市华中学师范大第一附属中学八年级数学第一学期期末统考模拟试题含解析_第3页
2022年湖北省武汉市华中学师范大第一附属中学八年级数学第一学期期末统考模拟试题含解析_第4页
2022年湖北省武汉市华中学师范大第一附属中学八年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.长度分别为a,2,4的三条线段能组成一个三角形,则a的值可能是()A.1 B.2 C.3 D.62.如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上,当△ABC是直角三角形时,AC的值为()A.4 B.2 C.1 D.4或13.如图,在长方形中,厘米,厘米,点在线段上以4厘米/秒的速度由点向点运动,同时,点在线段上由点向点运动.当点的运动速度为()厘米/秒时,能够在某一时刻使与全等.A.4 B.6 C.4或 D.4或64.如图,已知Rt△ABC中,∠ACB=90°,CD是高,∠A=30°,BD=2cm,则AB的长是()A.4 B.6 C.8 D.105.如图,在四边形ABCD中,,,,.分别以点A,C为圆心,大于长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A. B.4 C.3 D.6.如图,点在线段上,,增加下列一个条件,仍不能判定的是()A. B. C. D.7.如图,在中,,的中垂线交、于点、,的周长是8,,则的周长是()A.10 B.11 C.12 D.138.某中学八(1)班45名同学参加市“精准扶贫”捐款助学活动,共捐款400元,捐款情况记录表如下:捐款(元)35810人数2■■31表格中捐款5元和8元的人数不小心被墨水污染看不清楚.若设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得方程组()A. B.C. D.9.如图,∠ACD是△ABC的一个外角,过点D作直线,分别交AC和AB于点E,H.则下列结论中错误的是()A.∠HEC>∠BB.∠B+∠ACB=180°-∠AC.∠B+∠ACB<180°D.∠B>∠ACD10.如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分 B.中位数是95分C.平均数是95分 D.方差是15二、填空题(每小题3分,共24分)11.分解因式:ax2-a=______.12.若已知,,则__________.13.空调安装在墙上时,一般都采用如图所示的方法固定.这种方法应用的几何原理是:三角形具有______.14.画出一个正五边形的所有对角线,共有_____条.15.己知一次函数的图象与轴、轴分别交于、两点,将这条直线进行平移后交轴、轴分别交于、,要使点、、、构成的四边形面积为4,则直线的解析式为__________.16.已知:如图,点分别在等边三角形的边的延长线上,的延长线交于点,则_______.17.如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=°.18.平面直角坐标系中,点与点之间的距离是____.三、解答题(共66分)19.(10分)如图,将一长方形纸片放在平面直角坐标系中,,,,动点从点出发以每秒1个单位长度的速度沿向终点运动,运动秒时,动点从点出发以相同的速度沿向终点运动,当点、其中一点到达终点时,另一点也停止运动.设点的运动时间为:(秒)(1)_________,___________(用含的代数式表示)(2)当时,将沿翻折,点恰好落在边上的点处,求点的坐标及直线的解析式;(3)在(2)的条件下,点是射线上的任意一点,过点作直线的平行线,与轴交于点,设直线的解析式为,当点与点不重合时,设的面积为,求与之间的函数关系式.20.(6分)已知:如图,在中,,BE、CD是中线求证:.21.(6分)如图1,在△ABC中,AB=AC,∠BAC=90°,D为AC边上一动点,且不与点A点C重合,连接BD并延长,在BD延长线上取一点E,使AE=AB,连接CE.(1)若∠AED=10°,则∠DEC=度;(1)若∠AED=a,试探索∠AED与∠AEC有怎样的数量关系?并证明你的猜想;(3)如图1,过点A作AF⊥BE于点F,AF的延长线与EC的延长线交于点H,求证:EH1+CH1=1AE1.22.(8分)求证:线段垂直乎分线上的点到线段两端的距离相等.已知:求证:证明:23.(8分)如图,点,过点做直线平行于轴,点关于直线对称点为.(1)求点的坐标;(2)点在直线上,且位于轴的上方,将沿直线翻折得到,若点恰好落在直线上,求点的坐标和直线的解析式;(3)设点在直线上,点在直线上,当为等边三角形时,求点的坐标.24.(8分)某商场销售两种品牌的足球,购买2个品牌和3个品牌的足球共需280元;购买3个品牌和1个品牌的足球共需210元.(1)求这两种品牌足球的单价;(2)开学前,该商场对这两种足球开展了促销活动,具体办法如下:品牌足球按原价的九折销售,品牌足球10个以上超出部分按原价的七折销售.设购买个品牌的足球需要元,购买个品牌的足球需要元,分别求出,关于的函数关系式.(3)某校准备集体购买同一品牌的足球,若购买足球的数量为15个,购买哪种品牌的足球更合算?请说明理由.25.(10分)如图:AE=DE,BE=CE,AC和BD相交于点E,求证:AB=DC26.(10分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.

参考答案一、选择题(每小题3分,共30分)1、C【分析】根据三角形三边关系定理得出4-2<a<4+2,求出即可.【详解】由三角形三边关系定理得:4﹣2<a<4+2,即2<a<6,即符合的只有1.故选:C.【点睛】此题考查三角形三边关系定理,能根据定理得出5-1<a<5+1是解题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.2、D【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,即可求出AC的值.【详解】解:如图,当△ABC是直角三角形时,有△ABC1,△ABC2两种情况,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2,在Rt△ABC1中,AB=2,∠A=60°,∴∠ABC1=30°,∴AC1=AB=1;在Rt△ABC2中,AB=2,∠A=60°,∴∠AC2B=30°,∴AC2=4,故选:D.【点睛】本题考查解直角三角形,构造直角三角形,掌握直角三角形中30°的角所对的直角边等于斜边的一半是解题关键.3、C【分析】设点Q的速度为xcm/s,分两种情形构建方程即可解决问题.【详解】解:设点的速度为,分两种情形讨论:①当,时,与全等,即,解得:,∴,∴;②当,时,与全等,即,,∴,∴.综上所述,满足条件的点的速度为或.故答案选:C.【点睛】本题考查矩形的性质、全等三角形的性质、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.4、C【解析】试题解析:∵∠ACB=90°,∠A=30°,∴∠B=60°,又CD是高,∴∠BCD=30°,∴BC=2BD=4cm,∵∠A=30°,∴AB=2BC=8cm,故选C.5、A【分析】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出.再根据ASA证明,那么,等量代换得到,利用线段的和差关系求出.然后在直角中利用勾股定理求出CD的长.【详解】解:如图,连接FC,则.,.在与中,,,,,.在中,,,,.故选A.【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.6、B【分析】由CF=EB可求得EF=DC,结合∠A=∠D,根据全等三角形的判定方法,逐项判断即可.【详解】∵CF=EB,∴CF+FB=FB+EB,即EF=BC,且∠A=∠D,∴当时,可得∠DFE=∠C,满足AAS,可证明全等;当时,满足ASS,不能证明全等;当时,满足AAS,可证明全等;当时,可得,满足AAS,可证明全等.故选B.【点睛】此题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS,SAS,ASA,AAS和HL.7、C【分析】根据DE是AB的中垂线,可得AE=BE,再根据的周长可得BC+AC的值,最后计算的周长即可.【详解】解:∵DE是AB的中垂线,,∴AB=2AD=4,AE=BE,又∵的周长是8,即BC+BE+CE=8∴BC+AE+CE=BC+AC=8,∴的周长=BC+AC+AB=8+4=12,故答案为:C.【点睛】本题考查了垂直平分线的性质,掌握垂直平分线的概念及性质是解题的关键.8、A【分析】设捐款5元的有x名同学,捐款8元的有y名同学,利用八(1)班学生人数为45得出一个方程,然后利用共捐款400元得出另外一个方程,再组成方程组即可.【详解】解:设捐款5元的有x名同学,捐款8元的有y名同学,根据题意可得:,即.故选:A.【点睛】本题考查二元一次方程组的应用,关键是利用总人数和总钱数作为等量关系列方程组.9、D【分析】三角形的一个外角大于任何一个和它不相邻的一个内角,根据以上定理逐个判断即可.【详解】解:A、∵∠HEC>∠AHD,∠AHD>∠B,

∴∠HEC>∠B,故本选项不符合题意;B、∵∠B+∠ACB+∠A=180°,

∴∠B+∠ACB=180°-∠A,故本选项不符合题意;

C、∵∠B+∠ACB+∠A=180°,

∴∠B+∠ACB<180°,故本选项不符合题意;D、∠B<∠ACD,故本选项符合题意;

故选:D.【点睛】本题考查了三角形内角和定理和三角形的外角性质的应用,能灵活运用定理进行推理是解题的关键.10、A【解析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【详解】A、90分的人数最多,众数是90分,正确;

B、中位数是90分,错误;

C、平均数是分,错误;D、分,错误;

故选:A.【点睛】本题考查了折线统计图,用到的知识点是众数、中位数、平均数、方差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、方差.二、填空题(每小题3分,共24分)11、【解析】先提公因式,再套用平方差公式.【详解】ax2-a=a(x2-1)=故答案为:【点睛】掌握因式分解的一般方法:提公因式法,公式法.12、1【分析】利用平方差公式,代入x+y=5即可算出.【详解】解:由=5把x+y=5代入得x-y=1故本题答案为1.【点睛】本题考查了平方差公式的运用,熟练掌握相关知识点事解决本题的关键.13、稳定性【分析】钉在墙上的方法是构造三角形支架,因而应用了三角形的稳定性.【详解】这种方法应用的数学知识是:三角形的稳定性,故答案为:稳定性.【点睛】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.14、1【分析】画出图形即可求解.【详解】解:如图所示:五边形的对角线共有=1(条).故答案为:1.【点睛】本题考查多边形的对角线,解题关键是n边形从一个顶点出发的对角线有(n-3)条.15、或.【分析】先确定、点的坐标,利用两直线平移的问题设直线的解析式为,则可表示出,,,讨论:当点在轴的正半轴时,利用三角形面积公式得到,当点在轴的负半轴时,利用三角形面积公式得到,然后分别解关于的方程后确定满足条件的的直线解析式.【详解】解:一次函数的图象与轴、轴分别交于、两点,,,,设直线的解析式为,,,,如图1,当点在轴的正半轴时,则,依题意得:,解得(舍去)或,此时直线的解析式为;如图2,当点在轴的负半轴时,则,依题意得:,解得(舍去)或,此时直线的解析式为,综上所述,直线的解析式为或.故答案为:或.【点睛】本题考查了一次函数图象与几何变换:求直线平移后的解析式时要注意平移时的值不变.也考查了三角形面积公式.16、【分析】利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=BC,∠ABE=∠BCF=120°,然后结合已知条件可证△ABE≌△BCF,得到∠E=∠F,因为∠F+∠CBF=60°,即可求出得度数.【详解】解:∵△ABC是等边三角形,

∴AB=BC∴∠ACB=∠ABC=60º,∴∠ABE=∠BCF=120°,

在△ABE和△BCF中,

∴△ABE≌△BCF(SAS);∴∠E=∠F,∵∠GBE=∠CBF,∠F+∠CBF=60°∴=∠GBE+∠B=60°,故答案为60°.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,线段垂直平分线的性质等知识点.在证明两个三角形全等时,一定要找准对应角和对应边.17、50【解析】试题分析:由AC=AD=DB,可知∠B=∠BAD,∠ADC=∠C,设∠ADC=x,可得∠B=∠BAD=x,因此可根据三角形的外角,可由∠BAC=105°,求得∠DAC=105°-x,所以在△ADC中,可根据三角形的内角和可知∠ADC+∠C+∠DAC=180°,因此2x+105°-x=180°,解得:x=50°.考点:三角形的外角,三角形的内角和18、1【分析】根据点的坐标与勾股定理,即可求解.【详解】根据勾股定理得:AB=,故答案是:1.【点睛】本题主要考查平面直角坐标系中两点的距离,掌握勾股定理是解题的关键.三、解答题(共66分)19、(1)6-t,t+;(2)D(1,3),y=x+;(3)【分析】(1)根据点E,F的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案;(3)根据题意得直线直线的解析式为:,从而得M(,3),分2种情况:①当点M在线段DB上时,②当点M在DB的延长线上时,分别求出与之间的函数关系式,即可.【详解】∵,,,∴OA=6,OC=3,∵AE=t×1=t,∴6-t,(t+)×1=t+,故答案是:6-t,t+;(2)当时,6-t=5,t+=,∵将沿翻折,点恰好落在边上的点处,∴DF=OF=,DE=OE=5,过点E作EG⊥BC于点G,则EG=OC=3,CG=OE=5,∴DG=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线的解析式为:y=kx+b,把D(1,3),E(5,0)代入y=kx+b,得,解得:,∴直线的解析式为:y=x+;(3)∵MN∥DE,∴直线直线的解析式为:,令y=3,代入,解得:x=,∴M(,3).①当点M在线段DB上时,BM=6-()=,∴=,②当点M在DB的延长线上时,BM=-6=,∴=,综上所述:.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.20、见解析【解析】由中线性质得,,再证,由,得≌,可证.【详解】证明:∵、是中线,∴,,∵,∴,在和中,,∴≌,∴.【点睛】本题考核知识点:全等三角形.解题关键点:灵活运用全等三角形判定和性质证线段相等.21、(1)45度;(1)∠AEC﹣∠AED=45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;(1)由等腰三角形的性质可求∠BAE=180°﹣1α,可得∠CAE=90°﹣1α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=EF,CH=CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.【详解】解:(1)∵AB=AC,AE=AB,∴AB=AC=AE,∴∠ABE=∠AEB,∠ACE=∠AEC,∵∠AED=10°,∴∠ABE=∠AED=10°,∴∠BAE=140°,且∠BAC=90°∴∠CAE=50°,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=∠ACE=65°,∴∠DEC=∠AEC﹣∠AED=45°,故答案为:45;(1)猜想:∠AEC﹣∠AED=45°,理由如下:∵∠AED=∠ABE=α,∴∠BAE=180°﹣1α,∴∠CAE=∠BAE﹣∠BAC=90°﹣1α,∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,∴∠AEC=45°+α,∴∠AEC﹣∠AED=45°;(3)如图,过点C作CG⊥AH于G,∵∠AEC﹣∠AED=45°,∴∠FEH=45°,∵AH⊥BE,∴∠FHE=∠FEH=45°,∴EF=FH,且∠EFH=90°,∴EH=EF,∵∠FHE=45°,CG⊥FH,∴∠GCH=∠FHE=45°,∴GC=GH,∴CH=CG,∵∠BAC=∠CGA=90°,∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,∴△AFB≌△CGA(AAS)∴AF=CG,∴CH=AF,∵在Rt△AEF中,AE1=AF1+EF1,∴(AF)1+(EF)1=1AE1,∴EH1+CH1=1AE1.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.22、详见解析【分析】根据命题写出“已知”、“求证”,再证明△AMN≌△BMN(SAS)即可.【详解】解:已知:如图,线段AB的中点为M,过点M作MN⊥AB于点M,其中N为直线MN上任意不同于M的一点,连接AN,BN.求证:AN=BN.证明:∵MN⊥AB,∴∠NMA=∠NMB=90°,∵AB的中点为M,∴AM=BM,又∵MN=MN,∴△AMN≌△BMN(SAS),∴AN=BN,命题得证.【点睛】本题考查了命题的证明,涉及垂直平分线性质的证明,三角形全等的判定,解题的关键是根据命题写出“已知”、“求证”,并找出全等三角形.23、(1)(3,0);(2)A(1,);直线BD为;(3)点P的坐标为(,)或(,).【分析】(1)根据题意,点B、C关于点M对称,即可求出点C的坐标;(2)由折叠的性质,得AB=CB,BD=AD,根据勾股定理先求出AM的长度,设点D为(1,a),利用勾股定理构造方程,即可求出点D坐标,然后利用待定系数法求直线BD.(3)分两种情形:如图2中,当点P在第一象限时,连接BQ,PA.证明点P在AC的垂直平分线上,构建方程组求出交点坐标即可.如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,可得∠CAQ=∠CBP=30°,构建方程组解决问题即可.【详解】解:(1)根据题意,∵点B、C关于点M对称,且点B、M、C都在x轴上,又点B(),点M(1,0),∴点C为(3,0);(2)如图:由折叠的性质,得:AB=CB=4,AD=CD=BD,∵BM=2,∠AMB=90°,∴,∴点A的坐标为:(1,);设点D为(1,a),则DM=a,BD=AD=,在Rt△BDM中,由勾股定理,得,解得:,∴点D的坐标为:(1,);设直线BD为,则,解得:,∴直线BD为:;(3)如图2中,当点P在第一象限时,连接BQ,PA.∵△ABC,△CPQ都是等边三角形,∴∠ACB=∠PCQ=60°,∴∠ACP=∠BCQ,∵CA=CB,CP=CQ,∴△ACP≌△BCQ(SAS),∴AP=BQ,∵AD垂直平分线段BC,∴QC=QB,∴PA=PC,∴点P在AC的垂直平分线上,由,解得,∴P(,).如图3中,当点P在第三象限时,同法可得△CAQ≌△CBP,

∴∠CAQ=∠CBP=30°,∵B(-1,0),∴直线PB的解析式为,由,解得:,∴P(,).【点睛】本题属于一次函数综合题,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论