2022年湖北省黄冈市数学八年级上册期末学业水平测试试题含解析_第1页
2022年湖北省黄冈市数学八年级上册期末学业水平测试试题含解析_第2页
2022年湖北省黄冈市数学八年级上册期末学业水平测试试题含解析_第3页
2022年湖北省黄冈市数学八年级上册期末学业水平测试试题含解析_第4页
2022年湖北省黄冈市数学八年级上册期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.下列长度的三条线段能组成三角形的是A.2,3,5 B.7,4,2C.3,4,8 D.3,3,42.如果分式x-1x-1的值为零,那么xA.-1 B.0 C.1 D.±13.下列等式正确的是()A. B. C. D.4.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B. C.2.4 D.3.55.把一张正方形纸片如图①、图②对折两次后,再如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.6.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”四个节气,其中轴对称图形是()A. B. C. D.7.下列银行图标中,是轴对称图形的是()A. B. C. D.8.视力表中的字母“”有各种不同的摆放方向,下列图中两个“”不成轴对称的是()A. B. C. D.9.已知点P(0,m)在y轴的负半轴上,则点M(﹣m,1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.如图,点在线段上,,增加下列一个条件,仍不能判定的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在中,,,将绕点旋转到的位置,使顶点恰好在斜边上,与相交于点,则_________.12.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38、52、47、46、50、53、61、72、45、58,则10名女生仰卧起坐个数不少于50个的频率为__________.13.如果a+b=5,ab=﹣3,那么a2+b2的值是_____.14.计算____________.15.小强从镜子中看到的电子表的读数是15:01,则电子表的实际读数是______.16.如图所示,∠1=130°,则∠A+∠B+∠C+∠D+∠E+∠F的度数为_____.17.如图,在△ABC中,∠B=60°,AB=12cm,BC=4cm,现有一动点P从点A出发,以2cm/s的速度沿射线AB运动,当点P运动______s时,△PBC为等腰三角形.18.我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于微米的细颗粒物(即),已知微米米,此数据用科学记数法表示为__________米.三、解答题(共66分)19.(10分)计算:(1)计算:;(2)求x的值:(x+3)2=16;(3)如图,一木杆在离地某处断裂,木杆顶部落在离木杆底部8米处,已知木杆原长16米,求木杆断裂处离地面多少米?20.(6分)如图是由36个边长为1的小正方形拼成的网格图,请按照要求画图:(1)在图①中画出2个以AB为腰且底边不等的等腰△ABC,要求顶点C是格点;(2)在图②中画出1个以AB为底边的等腰△ABC,要求顶点C是格点.21.(6分)在如图所示的方格纸中,每个方格都是边长为1个单位的小正方形,的三个顶点都在格点上(每个小正方形的顶点叫做格点).(1)画出关于直线l对称的图形.(2)画出关于点O中心对称的图形,并标出的对称点.(3)求出线段的长度,写出过程.22.(8分)某中学八(1)班小明在综合实践课上剪了一个四边形ABCD,如图,连接AC,经测量AB=12,BC=9,CD=8,AD=17,∠B=90°.求证:△ACD是直角三角形.23.(8分)如图,已知AD=BC,AC=BD.(1)求证:△ADB≌△BCA;(2)OA与OB相等吗?若相等,请说明理由.24.(8分)先化简再求值:,其中25.(10分)如图,,,(1)求证:;(2)连接,求证:.26.(10分)已知:如图,点B、D、C在一条直线上,AB=AD,BC=DE,AC=AE,(1)求证:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题解析:A.∵3+2=5,∴2,3,5不能组成三角形,故A错误;B.∵4+2<7,∴7,4,2不能组成三角形,故B错误;C.∵4+3<8,∴3,4,8不能组成三角形,故C错误;D.∵3+3>4,∴3,3,4能组成三角形,故D正确;故选D.2、A【解析】根据分式值为零的条件(分母不等于零,分子等于零)计算即可.【详解】解:∵x-1≠0∴x≠1∵∴x=±1∴x=-1故选:A【点睛】本题考查了分式值为0的条件,当分式满足分子等于0且分母不等于0时,分式的值为0,分母不等于0这一条件是保证分式有意义的前提在计算时经常被忽视.3、B【分析】根据二次根式的性质逐一进行判断即可得出答案.【详解】A.,故该选项错误;B.,故该选项正确;C.,故该选项错误;D.,故该选项错误;故选:B.【点睛】本题主要考查二次根式的性质,掌握二次根式的性质是解题的关键.4、B【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,,故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.5、C【解析】当正方形纸片两次沿对角线对折成为一直角三角形时,在直角三角形中间的位置上剪三角形,则直角顶点处完好,即原正方形中间无损,且三角形关于对角线对称,三角形的一个顶点对着正方形的边.故选C.6、D【分析】根据轴对称图形的概念判断即可.【详解】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.【点睛】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.7、D【分析】根据轴对称图形的概念对各选项分析即可.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8、D【分析】根据两个图形成轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形成轴对称,逐一分析即可.【详解】解:A选项中两个“”成轴对称,故本选项不符合题意;B选项中两个“”成轴对称,故本选项不符合题意;C选项中两个“”成轴对称,故本选项不符合题意;D选项中两个“”不成轴对称,故本选项符合题意;故选D.【点睛】此题考查的是两个图形成轴对称的识别,掌握两个图形成轴对称的定义是解决此题的关键.9、A【分析】根据y轴的负半轴上的点横坐标等于零,纵坐标小于零,可得m的值,再根据不等式的性质解答.【详解】解:∵点P(0,m)在y轴的负半轴上,∴m<0,∴﹣m>0,∴点M(﹣m,1)在第一象限,故选:A.【点睛】本题主要考查平面直角坐标系有关的概念和不等式及其性质.解题的关键是掌握y轴的负半轴上的点的特点.10、B【分析】由CF=EB可求得EF=DC,结合∠A=∠D,根据全等三角形的判定方法,逐项判断即可.【详解】∵CF=EB,∴CF+FB=FB+EB,即EF=BC,且∠A=∠D,∴当时,可得∠DFE=∠C,满足AAS,可证明全等;当时,满足ASS,不能证明全等;当时,满足AAS,可证明全等;当时,可得,满足AAS,可证明全等.故选B.【点睛】此题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,即SSS,SAS,ASA,AAS和HL.二、填空题(每小题3分,共24分)11、24°【分析】根据旋转的性质,得到,,然后利用三角形内角和定理,求出的度数.【详解】解:由旋转的性质,得,,∴,∵,∴,∴;故答案为:.【点睛】本题考查了旋转的性质,等边对等角,以及三角形内角和定理,解题的关键是正确得到.12、【分析】数出这10个数据中不少于50的个数,然后根据频率公式:频率=频数÷总数,计算即可.【详解】解:这10个数据中不少于50有52、50、53、61、72、58,共6个∴10名女生仰卧起坐个数不少于50个的频率为6÷10=故答案为:.【点睛】此题考查的是求频率问题,掌握频率公式:频率=频数÷总数是解决此题的关键.13、31【分析】先根据完全平方公式:可得:,再将a+b=5,ab=﹣3代入上式计算即可.【详解】因为,所以,将a+b=5,ab=﹣3代入上式可得:,故答案为:31.【点睛】本题主要考查完全平方公式,解决本题的关键是要熟练应用完全平方公式进行灵活变形.14、【分析】根据,进行计算即可得到答案.【详解】====【点睛】本题考查了二次根式的乘除运算法则,注意最后结果化成最简二次根式,准确计算是解题的关键.15、10:51【解析】由镜面对称的特点可知:该电子表的实际读数是:10:51.故答案为10:51.16、260°.【分析】利用三角形的外角等于不相邻的两个内角之和以及等量代换进行解题即可【详解】解:如图:∠1=∠B+∠C,∠DME=∠A+∠E,∠ANF=∠F+∠D,∵∠1=∠DME+∠ANF=130°,∴∠A+∠B+∠C+∠D+∠E+∠F=2×130°=260°.故答案为260°.【点睛】本题主要考查三角形的外角性质,关键在于能够把所有的外角关系都找到17、4或1【分析】分①当点P在线段AB上时,②当点P在AB的延长线上时两种情况讨论即可.【详解】解:如图①,当点P在线段AB上时,∵∠B=60°,△PBC为等腰三角形,∴△PBC是等边三角形,∴PB=PC=BC=4cm,AP=AB-BP=1cm,∴运动时间为1÷2=4s;如图②,当点P在AB的延长线上时,∵∠CBP=110°-∠ABC=120°,∴BP=BC=4cm.此时AP=AB+BP=16cm,∴运动时间为16÷2=1s;综上所述,当点P运动4s或1s时,△PBC为等腰三角形,故答案为:4或1.【点睛】本题主要考了等边三角形的性质和判定,等腰三角形的判定,找全两种情况是解题关键.18、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】,故答案为.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.三、解答题(共66分)19、(1)2;(2)x=﹣7或1;(3)木杆断裂处离地面1米【分析】(1)直接利用立方根以及二次根式的性质化简得出答案;(2)直接利用平方根的定义得出答案;(3)设木杆断裂处离地面x米,由题意得x2+82=(11﹣x)2,求出x的值即可.【详解】解:(1)=5﹣2﹣=2;(2)(x+3)2=11,则x+3=±4,则x=﹣7或1;(3)设木杆断裂处离地面x米,由题意得x2+82=(11﹣x)2,解得x=1.答:木杆断裂处离地面1米.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.20、(1)答案见解析;(2)答案见解析.【分析】(1)以A或者B为原点,再作与线段AB相等的线段与格点相交于C,连接ABC三点即可(2)作线段AB的中线,中线与格点相交于C,连接ABC三点即可【详解】解:(1)此为所有存在的答案,取其中2个即可(2)此为所有存在的答案,取其中1个即可【点睛】本题考察了几何画图的能力,掌握等腰三角形的性质,按题意作图即可21、(1)详见解析;(2)详见解析;(3)【分析】(1)根据网格结构找出点A、B、C关于直线l的对称点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于点O中心对称的点A2、B2、C2的位置,然后顺次连接即可;(3)利用勾股定理列式计算即可得解.【详解】(1)如图:(2)如图:(3)过点M竖直向下作射线,过点M'水平向左作射线,两条线相交于点N,可知∠MNM'是直角,在RtΔMNM'中,由勾股定理得MN2+NM'2=MM'2,因为MN=2,M'N=5,所以MM'=【点睛】本题考查了利用轴对称变换作图,利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22、见解析【分析】先根据勾股定理求出AC的长,然后在△ACD中,由勾股定理的逆定理,即可证明△ACD为直角三角形.【详解】证明:∵∠B=90°,AB=12,BC=9,∴AC2=AB2+BC2=144+81=225,∴AC=15,又∵AC2+CD2=225+64=289,AD2=289,∴AC2+CD2=AD2,∴△ACD是直角三角形.【点睛】此题主要考查了勾股定理以及勾股定理的逆定理,正确得出AC的长是解题的关键.23、(1)详见解析;(2)OA=OB,理由详见解析.【解析】试题分析:(1)根据SSS定理推出全等即可;(2)根据全等得出∠OAB=∠OBA,根据等角对等边即可得出OA=OB.试题解析:(1)证明:∵在△ADB和△BCA中,AD=BC,AB=BA,BD=AC,∴△ADB≌△BCA(SSS);(2)解:OA=OB,理由是:∵△AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论