版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十八章平行四边形
正方形第十八章平行四边形正方形1学习目标1.能说出正方形的意义及性质.2.能说出正方形与其他特殊四边形的关系(共性与个性).3.知道正方形的判定方法.
重点:正方形的性质及与其他特殊四边形的联系与区别.
难点:正方形的性质的运用.学习目标1.能说出正方形的意义及性质.2除了矩形和菱形外,还有什么特殊的平行四边形吗?正方形正方形有什么性质?怎样判定一个四边形是正方形?新课导入除了矩形和菱形外,还有什么特殊的平行四边形吗?3正方形与矩形的区别是:矩形〃正方形邻边相等〃〃发现:一组邻边相等的矩形叫正方形正方形定义:(矩形法)一组邻边相等的矩形叫正方形正方形与矩形的区别是:矩形〃正方形邻边相等〃〃4重点:正方形的性质及与其他特殊四边形的联系与区别.正方形与平行四边形的区别是:每一条对角线平分一组对角发现:(1)对角线互相垂直且相等的平行四边形.(4)对角线互相垂直平分且相等的四边形.∴BM=CN.那么,如何判定一个四边形是正方形呢?求证:四边形CFDE是正方形.正方形对边平行四边相等等腰直角三角形.是等腰直角三角形,并且有一组邻边相等且有一个角是直角(2)先证它是菱形,再证它有一个角为直角.如图所示,一共有多少对全等三角形()根据正方形的判定方法,知四边形CEDF是正方形(2)对角线互相垂直的矩形.OB=OC,∠BOM=∠CON=90°,OB=OC,∠BOM=∠CON=90°,∴BM=CN.
正方形也是矩形,所以它具有矩形的性质,四个角相等,对角线相等.重点:正方形的性质及与其他特殊四边形的联系与区别.5正方形与菱形的区别是:
菱形一个角是直角正方形∟发现:一个角为直角的菱形叫正方形正方形定义:(菱形法)一个角为直角的菱形叫正方形正方形与菱形的区别是:菱形一个角是直角正方形6
正方形也是菱形,所以正方形也具有菱形的性质,即正方形的四条边相等,对角线互相垂直,并且每条对角线平分一组对角.正方形也是菱形,所以正方形也具有菱形的性质,7正方形与平行四边形的区别是:6对对对对求证:△ABO、△BCO、△CDO、△DAO是全等的重点:正方形的性质及与其他特殊四边形的联系与区别.正方形与矩形的区别是:∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴四边形CEDF有三个直角,交于点O.正方形有什么性质?怎样判定一个四边形是正方形?正方形对边平行四边相等有一组邻边相等且有一个角是直角6对对对对正方形是中心对称图形,它也是轴对称图形判定一个四边形为正方形的主要依据是定义,途径有两条:∴BM=CN.每一条对角线平分一组对角能说出正方形的意义及性质.已知:如图,四边形ABCD是正方形,对角线AC、BD相正方形与平行四边形的区别是:OB=OC,∠BOM=∠CON=90°,正方形具有矩形性质,同时也具有菱形性质。正方形即是特殊的矩形又是特殊的菱形。正方形性质=菱形性质矩形性质正方形与平行四边形的区别是:正方形具有矩形性质,正方形即是特8有一组邻边相等并且有一个角是直角的平行四边形是正方形有一组邻边相等且有一个角是直角正方形与平行四边形的区别是:正方形定义:(平行四边形法)有一组邻边相等并且有一个角是直角的平行四边形是正方形有一组邻9怎样有矩形、菱形和平行四边形有一个角是直角有一组邻边相等有一组邻边相等有一个角是直角有一组邻边相等且有一个角是直角正方形?怎样有矩形、菱形和平行四边形有一个角是直角有一组邻边相等有一10是轴对称图形,有4条对称轴.正方形是轴对称图形,有几条对称轴?它的对称轴是什么?是轴对称图形,有4条对称轴.正方形是轴对称图形,有几条对称轴11正方形的性质正方形的四个角都是直角;正方形的四条边都相等;正方形的对角线相等,并且互相垂直平分;正方形是轴对称图形,它有四条对称轴.正方形的性质正方形的四个角都是直角;12那么,如何判定一个四边形是正方形呢?判定一个四边形为正方形的主要依据是定义,途径有两条:(1)先证它是矩形,再证它有一组邻边相等;(2)先证它是菱形,再证它有一个角为直角.那么,如何判定一个四边形是正方形呢?13求证:△ABO、△BCO、△CDO、△DAO是全等的那么,如何判定一个四边形是正方形呢?能说出正方形的意义及性质.∴△BOM≌△CON,发现:知道正方形的判定方法.6对对对对(2)先证它是矩形,再证它有一组邻边相等;∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴四边形CEDF有三个直角,可知DE=DF,所以矩形CEDF有一组邻边相等OB=OC,∠BOM=∠CON=90°,怎样有矩形、菱形和平行四边形是等腰直角三角形,并且每一条对角线平分一组对角∴AC=BD,AC⊥BD,AO=BO=CO=DO.重点:正方形的性质及与其他特殊四边形的联系与区别.有一组邻边相等且有一个角是直角正方形对边平行四边相等∴四边形CEDF有三个直角,如图所示,一共有多少对全等三角形()正方形定义:(菱形法)求证:四边形CFDE是正方形.有一组邻边相等且有一个角是直角∵四边形ABCD是正方形,是等腰直角三角形,并且正方形的四个角都是直角根据正方形的判定方法,知四边形CEDF是正方形正方形有什么性质?怎样判定一个四边形是正方形?OB=OC,∠BOM=∠CON=90°,正方形对边平行四边相等OB=OC,∠BOM=∠CON=90°,每一条对角线平分一组对角正方形有什么性质?怎样判定一个四边形是正方形?平行四边形、矩形、菱形、正方形之间关系发现:∴AC=BD,AC⊥BD,AO=BO=CO=DO.重点:正方形的性质及与其他特殊四边形的联系与区别.OB=OC,∠BOM=∠CON=90°,求证:△ABO、△BCO、△CDO、△DAO是全等的平行四边形正方形一组邻边相等一内角是直角1、正方形菱形
2、一内角是直角正方形的判定方法:(可从平行四边形、矩形、菱形为基础)定义法菱形法矩形3、一组邻边相等正方形矩形法求证:△ABO、△BCO、△CDO、△DAO是全等的14平行四边形矩形四边形菱形正方形平行四边形、矩形、菱形、正方形之间关系平行四边形矩形四边形菱形正平行四边形、矩形、菱形、正方形之间15练一练1.正方形具有而菱形不一定具有的性质是()A.对角线互相平分
B.对角线互相垂直C.对角线相等
D.每一条对角线平分一组对角C练一练1.正方形具有而菱形不一定具有的性质是162.如图所示,一共有多少对全等三角形()A.6对对对对ABCD0ED2.如图所示,一共有多少对全等三角形()ABCD173.满足下列条件的四边形是不是正方形?为什么?
(1)对角线互相垂直且相等的平行四边形.(
)
(2)对角线互相垂直的矩形.(
)
(3)对角线相等的菱形.(
)
(4)对角线互相垂直平分且相等的四边形.(
)√√√√3.满足下列条件的四边形是不是正方形?为什么?18
4.求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O.
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.ADCBO4.求证:正方形的两条对角线把这个正方形分成四个全19证明:∵四边形ABCD是正方形,∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△BCO
≌△CDO≌△DAO.ADCBO证明:ADCBO20
5.如图,正方形ABCD中,AC与BD交于点O,点M,N分别在AC,BD上,且OM=ON,求证:BM=CN.5.如图,正方形ABCD中,AC与BD交于点O,点M,21证明:由正方形的性质可得:OB=OC,∠BOM=∠CON=90°,又∵OM=ON,∴△BOM≌△CON,∴BM=CN.证明:由正方形的性质可得:226、已知:如图,△ABC中,∠C=90°,CD平分∠ACB,DE⊥BC于E,DF⊥AC于F.求证:四边形CFDE是正方形.6、已知:如图,△ABC中,∠C=90°,CD平分∠ACB,23解:∵∠C=90°,DE⊥BC于E,DF⊥AC于F∴四边形CEDF有三个直角,
∴它是矩形又∵CD平分∠ACB根据角平分线上的点都两边的距离相等,可知DE=DF,所以矩形CEDF有一组邻边相等根据正方形的判定方法,知四边形CEDF是正方形解:24边对角线角
正方形对边平行四边相等正方形的四个角都是直角正方形的对角线相等,互相垂直平分,每条对角线平分一组对角。正方形是中心对称图形,它也是轴对称图形正方形是一个完美的图形正方形的性质课堂小结边对角线角正方形对边平行四边相等正方形的四个角都是直角正25
正方形判定:(2)先证它是矩形,再证它有一组邻边相等;(3)先证它是菱形,再证它有一个角为直角.(1)正方形的定义正方形判定:(2)先证它是矩形,再证它有一组邻边相等;(26谢谢观看谢谢观看27第十八章平行四边形
正方形第十八章平行四边形正方形28学习目标1.能说出正方形的意义及性质.2.能说出正方形与其他特殊四边形的关系(共性与个性).3.知道正方形的判定方法.
重点:正方形的性质及与其他特殊四边形的联系与区别.
难点:正方形的性质的运用.学习目标1.能说出正方形的意义及性质.29除了矩形和菱形外,还有什么特殊的平行四边形吗?正方形正方形有什么性质?怎样判定一个四边形是正方形?新课导入除了矩形和菱形外,还有什么特殊的平行四边形吗?30正方形与矩形的区别是:矩形〃正方形邻边相等〃〃发现:一组邻边相等的矩形叫正方形正方形定义:(矩形法)一组邻边相等的矩形叫正方形正方形与矩形的区别是:矩形〃正方形邻边相等〃〃31重点:正方形的性质及与其他特殊四边形的联系与区别.正方形与平行四边形的区别是:每一条对角线平分一组对角发现:(1)对角线互相垂直且相等的平行四边形.(4)对角线互相垂直平分且相等的四边形.∴BM=CN.那么,如何判定一个四边形是正方形呢?求证:四边形CFDE是正方形.正方形对边平行四边相等等腰直角三角形.是等腰直角三角形,并且有一组邻边相等且有一个角是直角(2)先证它是菱形,再证它有一个角为直角.如图所示,一共有多少对全等三角形()根据正方形的判定方法,知四边形CEDF是正方形(2)对角线互相垂直的矩形.OB=OC,∠BOM=∠CON=90°,OB=OC,∠BOM=∠CON=90°,∴BM=CN.
正方形也是矩形,所以它具有矩形的性质,四个角相等,对角线相等.重点:正方形的性质及与其他特殊四边形的联系与区别.32正方形与菱形的区别是:
菱形一个角是直角正方形∟发现:一个角为直角的菱形叫正方形正方形定义:(菱形法)一个角为直角的菱形叫正方形正方形与菱形的区别是:菱形一个角是直角正方形33
正方形也是菱形,所以正方形也具有菱形的性质,即正方形的四条边相等,对角线互相垂直,并且每条对角线平分一组对角.正方形也是菱形,所以正方形也具有菱形的性质,34正方形与平行四边形的区别是:6对对对对求证:△ABO、△BCO、△CDO、△DAO是全等的重点:正方形的性质及与其他特殊四边形的联系与区别.正方形与矩形的区别是:∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴四边形CEDF有三个直角,交于点O.正方形有什么性质?怎样判定一个四边形是正方形?正方形对边平行四边相等有一组邻边相等且有一个角是直角6对对对对正方形是中心对称图形,它也是轴对称图形判定一个四边形为正方形的主要依据是定义,途径有两条:∴BM=CN.每一条对角线平分一组对角能说出正方形的意义及性质.已知:如图,四边形ABCD是正方形,对角线AC、BD相正方形与平行四边形的区别是:OB=OC,∠BOM=∠CON=90°,正方形具有矩形性质,同时也具有菱形性质。正方形即是特殊的矩形又是特殊的菱形。正方形性质=菱形性质矩形性质正方形与平行四边形的区别是:正方形具有矩形性质,正方形即是特35有一组邻边相等并且有一个角是直角的平行四边形是正方形有一组邻边相等且有一个角是直角正方形与平行四边形的区别是:正方形定义:(平行四边形法)有一组邻边相等并且有一个角是直角的平行四边形是正方形有一组邻36怎样有矩形、菱形和平行四边形有一个角是直角有一组邻边相等有一组邻边相等有一个角是直角有一组邻边相等且有一个角是直角正方形?怎样有矩形、菱形和平行四边形有一个角是直角有一组邻边相等有一37是轴对称图形,有4条对称轴.正方形是轴对称图形,有几条对称轴?它的对称轴是什么?是轴对称图形,有4条对称轴.正方形是轴对称图形,有几条对称轴38正方形的性质正方形的四个角都是直角;正方形的四条边都相等;正方形的对角线相等,并且互相垂直平分;正方形是轴对称图形,它有四条对称轴.正方形的性质正方形的四个角都是直角;39那么,如何判定一个四边形是正方形呢?判定一个四边形为正方形的主要依据是定义,途径有两条:(1)先证它是矩形,再证它有一组邻边相等;(2)先证它是菱形,再证它有一个角为直角.那么,如何判定一个四边形是正方形呢?40求证:△ABO、△BCO、△CDO、△DAO是全等的那么,如何判定一个四边形是正方形呢?能说出正方形的意义及性质.∴△BOM≌△CON,发现:知道正方形的判定方法.6对对对对(2)先证它是矩形,再证它有一组邻边相等;∴AC=BD,AC⊥BD,AO=BO=CO=DO.∴四边形CEDF有三个直角,可知DE=DF,所以矩形CEDF有一组邻边相等OB=OC,∠BOM=∠CON=90°,怎样有矩形、菱形和平行四边形是等腰直角三角形,并且每一条对角线平分一组对角∴AC=BD,AC⊥BD,AO=BO=CO=DO.重点:正方形的性质及与其他特殊四边形的联系与区别.有一组邻边相等且有一个角是直角正方形对边平行四边相等∴四边形CEDF有三个直角,如图所示,一共有多少对全等三角形()正方形定义:(菱形法)求证:四边形CFDE是正方形.有一组邻边相等且有一个角是直角∵四边形ABCD是正方形,是等腰直角三角形,并且正方形的四个角都是直角根据正方形的判定方法,知四边形CEDF是正方形正方形有什么性质?怎样判定一个四边形是正方形?OB=OC,∠BOM=∠CON=90°,正方形对边平行四边相等OB=OC,∠BOM=∠CON=90°,每一条对角线平分一组对角正方形有什么性质?怎样判定一个四边形是正方形?平行四边形、矩形、菱形、正方形之间关系发现:∴AC=BD,AC⊥BD,AO=BO=CO=DO.重点:正方形的性质及与其他特殊四边形的联系与区别.OB=OC,∠BOM=∠CON=90°,求证:△ABO、△BCO、△CDO、△DAO是全等的平行四边形正方形一组邻边相等一内角是直角1、正方形菱形
2、一内角是直角正方形的判定方法:(可从平行四边形、矩形、菱形为基础)定义法菱形法矩形3、一组邻边相等正方形矩形法求证:△ABO、△BCO、△CDO、△DAO是全等的41平行四边形矩形四边形菱形正方形平行四边形、矩形、菱形、正方形之间关系平行四边形矩形四边形菱形正平行四边形、矩形、菱形、正方形之间42练一练1.正方形具有而菱形不一定具有的性质是()A.对角线互相平分
B.对角线互相垂直C.对角线相等
D.每一条对角线平分一组对角C练一练1.正方形具有而菱形不一定具有的性质是432.如图所示,一共有多少对全等三角形()A.6对对对对ABCD0ED2.如图所示,一共有多少对全等三角形()ABCD443.满足下列条件的四边形是不是正方形?为什么?
(1)对角线互相垂直且相等的平行四边形.(
)
(2)对角线互相垂直的矩形.(
)
(3)对角线相等的菱形.(
)
(4)对角线互相垂直平分且相等的四边形.(
)√√√√3.满足下列条件的四边形是不是正方形?为什么?45
4.求证:正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.已知:如图,四边形ABCD是正方形,对角线AC、BD相交于点O.
求证:△ABO、△BCO、△CDO、△DAO是全等的等腰直角三角形.ADCBO4.求证:正方形的两条对角线把这个正方形分成四个全46证明:∵四边形ABCD是正方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 进口白糖的货物买卖合同(2篇)
- 电子密码锁键盘课程设计
- 塑形镜的护理与摘戴
- 电子售货机课程设计
- 电子与线路课程设计
- 外科护理学实验课课程说课
- 2024工厂租赁合同的范本
- 电厂加氢燃烧现象研究报告
- 电动滑板车课程设计
- 哮喘的调养与护理
- 屋面太阳能发电系统施工方案
- 咨询公司招聘合同范本
- 2025年中国细胞与基因治疗行业深度分析、投资前景、趋势预测报告(智研咨询)
- 护理学科建设规划
- 2024年度生产设备操作安全协议
- 四方建房合同模板
- 第六单元 百分数(一) 单元测试(含答案)2024-2025学年六年级上册数学人教版
- 学生心理问题的识别与干预-班主任工作培训课件
- 城市公共交通条例
- 2021大学生个人职业生涯规划书6篇
- 24秋国家开放大学《计算机系统与维护》实验1-13参考答案
评论
0/150
提交评论