下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.二次函数(b>0)与反比例函数在同一坐标系中的图象可能是()A. B. C. D.2.如图所示,在半径为10cm的⊙O中,弦AB=16cm,OC⊥AB于点C,则OC等于()A.3cm B.4cm C.5cm D.6cm3.抛物线的顶点到轴的距离为()A. B. C.2 D.34.在反比例函数的图象的每个象限内,y随x的增大而增大,则k值可以是()A.-1 B.1 C.2 D.35.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.6.抛物线y=(x﹣2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)7.如图,将绕点A按顺时针方向旋转一定角度得到,点B的对应点D恰好落在边上.若,则的长为()A.0.5 B.1.5 C. D.18.如图,E为平行四边形ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则平行四边形ABCD的面积为()
A.30 B.27 C.14 D.329.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.10.已知是的反比例函数,下表给出了与的一些值,表中“▲”处的数为()▲A. B. C. D.二、填空题(每小题3分,共24分)11.如果将抛物线平移,顶点移到点P(3,-2)的位置,那么所得新抛物线的表达式为___________.12.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.13.在平面直角坐标系中,反比例函数的图象经过点,,则的值是__________.14.如图,在正方形网格中,每个小正方形的边长都是1,的每个顶点都在格点上,则_____.15.小明身高是1.6m,影长为2m,同时刻教学楼的影长为24m,则楼的高是_____.16.如图,在正方形ABCD中,对角线AC、BD交于点O,E是BC的中点,DE交AC于点F,则tan∠BDE=______.17.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是_______,阴影部分面积为(结果保留π)________.18.小慧准备给妈妈打个电话,但她只记得号码的前位,后三位由,,这三个数字组成,具体顺序忘记了,则她第一次试拨就拨通电话的概率是________.三、解答题(共66分)19.(10分)一个不透明的布袋里装有2个白球和2个红球,它们除颜色外其余都相同.(1)从中任意摸出1个球,则摸到红球的概率是;(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球是同色的概率.20.(6分)如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:=OE•OF.21.(6分)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).22.(8分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;(2)求折成的无盖盒子的侧面积的最大值.23.(8分)如图,在边长为1的正方形网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的△A1OB1,点A1的坐标为______;(2)在旋转过程中,点B经过的路径的长.24.(8分)如图,锐角三角形中,,分别是,边上的高,垂足为,.(1)证明:.(2)若将,连接起来,则与能相似吗?说说你的理由.25.(10分)某商场销售一种商品,若将50件该商品按标价打八折销售,比按原标价销售这些商品少获利200元.求该商品的标价为多少元;已知该商品的进价为每件12元,根据市场调查:若按中标价销售,该商场每天销售100件;每涨1元,每天要少卖5件那么涨价后要使该商品每天的销售利润最大,应将销售价格定为每件多少元?最大利润是多少?26.(10分)如图,抛物线y=a(x+2)(x﹣4)与x轴交于A,B两点,与y轴交于点C,且∠ACO=∠CBO.(1)求线段OC的长度;(2)若点D在第四象限的抛物线上,连接BD、CD,求△BCD的面积的最大值;(3)若点P在平面内,当以点A、C、B、P为顶点的四边形是平行四边形时,直接写出点P的坐标.
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:∵当反比例函数经过第二、四象限时,a<0,∴抛物线(b>0)中a<0,b>0,∴抛物线开口向下.所以A选项错误.∵当反比例函数经过第一、三象限时,a>0,∴抛物线(b>0)中a>0,b>0,∴抛物线开口向上,抛物线与y轴的交点在x轴上方.所以B选项正确,C,D选项错误.故选B.考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用.2、D【分析】根据垂径定理可知AC的长,再根据勾股定理即可求出OC的长.【详解】解:连接OA,如图:∵AB=16cm,OC⊥AB,∴AC=AB=8cm,在RtOAC中,OC===6(cm),故选:D.【点睛】本题考查的是垂径定理、勾股定理,熟练掌握垂径定理,构造出直角三角形是解答此题的关键.3、C【分析】根据二次函数的顶点式即可得到顶点纵坐标,即可判断距x轴的距离.【详解】由题意可知顶点纵坐标为:-2,即到x轴的距离为2.故选C.【点睛】本题考查顶点式的基本性质,需要注意题目考查的是距离即为坐标绝对值.4、A【解析】因为的图象,在每个象限内,y的值随x值的增大而增大,所以k−1<0,即k<1.故选A.5、C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.6、A【解析】已知抛物线解析式为顶点式,可直接写出顶点坐标.【详解】:∵y=(x﹣2)2﹣3为抛物线的顶点式,根据顶点式的坐标特点可知,
∴抛物线的顶点坐标为(2,-3).
故选A..【点睛】本题考查了将解析式化为顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.7、D【解析】利用∠B的正弦值和正切值可求出BC、AB的长,根据旋转的性质可得AD=AB,可证明△ADB为等边三角形,即可求出BD的长,根据CD=BC-BD即可得答案.【详解】∵AC=,∠B=60°,∴sinB=,即,tan60°=,即,∴BC=2,AB=1,∵绕点A按顺时针方向旋转一定角度得到,∴AB=AD,∵∠B=60°,∴△ADB是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.8、A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.9、B【分析】根据轴对称图形与中心对称图形的概念判定即可.【详解】解:A、不是轴对称图形,也是中心对称图形B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故答案为B.【点睛】本题考查了中心对称图形与轴对称图形的概念,掌握轴对称和中心对称概念的区别是解答本题的关键.10、D【分析】设出反比例函数解析式,把代入可求得反比例函数的比例系数,当时计算求得表格中未知的值.【详解】是的反比例函数,,,,,当时,,故选:D.【点睛】本题考查了用待定系数法求反比例函数解析式;点在反比例函数图象上,点的横纵坐标适合函数解析式,在同一函数图象上的点的横纵坐标的积相等.二、填空题(每小题3分,共24分)11、【解析】抛物线y=−2x²平移,使顶点移到点P(3,-2)的位置,所得新抛物线的表达式为y=−2(x-3)²-2.故答案为y=−2(x-3)²-2.12、-1【分析】直接根据两根之和的公式可得答案.【详解】∵a、b是一元二次方程x2+x﹣1=0的两根,∴a+b=﹣1,故答案为:﹣1.【点睛】此题考查一元二次方程根与系数的公式,熟记公式并熟练解题是关键.13、【分析】将点B的坐标代入反比例函数求出k,再将点A的坐标代入计算即可;【详解】(1)将代入得,k==-6,所以,反比例函数解析式为,将点的坐标代入得所以m=,故填:.【点睛】此题主要考查反比例函数的图像与性质,解题的关键是熟知待定系数法求解析式.14、2【分析】如图,取格点E,连接EC.利用勾股定理的逆定理证明∠AEC=90°即可解决问题.【详解】解:如图,取格点E,连接EC.易知AE=,∴AC2=AE2+EC2,∴∠AEC=90°,∴tan∠BAC=.【点睛】本题考查解直角三角形,勾股定理以及逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、19.2m【分析】根据在同一时物体的高度和影长成正比,设出教学楼高度即可列方程解答.【详解】设教学楼高度为xm,列方程得:解得x=19.2,故教学楼的高度为19.2m.故答案为:19.2m.【点睛】本题考查了相似三角形的应用,解题时关键是找出相等的比例关系,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.16、【分析】设AD=DC=a,根据勾股定理求出AC,易证△AFD∽△CFE,根据相似三角形的性质,可得:=2,进而求得CF,OF的长,由锐角的正切三角函数定义,即可求解.【详解】∵四边形ABCD是正方形,∴∠ADC=90°,AC⊥BD,设AD=DC=a,∴AC=a,∴OA=OC=OD=a,∵E是BC的中点,∴CE=BC=a,∵AD∥BC,∴△AFD∽△CFE,∴=2,∴CF=AC=a,∴OF=OC﹣CF=a,∴tan∠BDE===,故答案为:.【点睛】本题主要考查相似三角形的判定和性质定理以及正切三角函数的定义,根据题意,设AD=DC=a,表示出OF,OD的长度,是解题的关键.17、相切6-π【详解】∵正方形ABCD是正方形,则∠C=90°,∴D与⊙O的位置关系是相切.∵正方形的对角线相等且相互垂直平分,∴CE=DE=BE,∵CD=4,∴BD=4,∴CE=DE=BE=2梯形OEDC的面积=(2+4)×2÷2=6,扇形OEC的面积==π,∴阴影部分的面积=6-π.18、【解析】首先根据题意可得:可能的结果有:512,521,152,125,251,215;然后利用概率公式求解即可求得答案.【详解】∵她只记得号码的前5位,后三位由5,1,2,这三个数字组成,∴可能的结果有:512,521,152,125,251,215;∴他第一次就拨通电话的概率是:故答案为.【点睛】考查概率的求法,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的之比.三、解答题(共66分)19、(1);(2)【分析】(1)根据等可能事件的概率公式,即可求解;(2)根据题意,列出表格,可知:总共有12种等可能的情况,摸出颜色相同的情况有4种,进而即可求解.【详解】(1)P(摸到红球)==;(2)列表分析如下(同色用“√”,异色用“×”表示):白1白2红1红2白1√××白2√××红1××√红2××√∴(两次摸到同色球).【点睛】本题主要考查等可能事件的概率,掌握列表法和概率公式,是解题的关键.20、(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)由EC∥AB,∠EDA=∠ABF,可证得∠DAB=∠ABF,即可证得AD∥BC,则得四边形ABCD为平行四边形;(2)由EC∥AB,可得,由AD∥BC,可得,等量代换得出,即=OE•OF.试题解析:(1)∵EC∥AB,∴∠EDA=∠DAB,∵∠EDA=∠ABF,∴∠DAB=∠ABF,∴AD∥BC,∵DC∥AB,∴四边形ABCD为平行四边形;(2)∵EC∥AB,∴△OAB∽△OED,∴,∵AD∥BC,∴△OBF∽△ODA,∴,∴,∴=OE•OF.考点:相似三角形的判定与性质;平行四边形的判定与性质.21、(1)作图见解析;(2)作图见解析;(3)2π.【分析】(1)利用轴对称的性质画出图形即可;(2)利用旋转变换的性质画出图形即可;(3)BC扫过的面积=,由此计算即可;【详解】(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积===2π.【点睛】本题考查了利用轴对称和旋转变换作图,扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键.22、(1)5cm;(1)最大值是800cm1.【分析】(1)设剪掉的正方形的边长为x
cm,则AB=(40-1x)cm,根据盒子的底面积为484cm1,列方程解出即可;(1)设剪掉的正方形的边长为x
cm,盒子的侧面积为y
cm1,侧面积=4个长方形面积;则y=-8x1+160x,配方求最值.【详解】(1)设剪掉的正方形的边长为xcm,则(40﹣1x)1=900,即40﹣1x=±30,解得x1=35(不合题意,舍去),x1=5;答:剪掉的正方形边长为5cm;(1)设剪掉的正方形的边长为xcm,盒子的侧面积为ycm1,则y与x的函数关系式为y=4(40﹣1x)x,即y=﹣8x1+160x,y=﹣8(x﹣10)1+800,∵﹣8<0,∴y有最大值,∴当x=10时,y最大=800;答:折成的长方体盒子的侧面积有最大值,这个最大值是800cm1.【点睛】本题考查了一元二次方程的应用和二次函数的最值问题,根据几何图形理解如何建立一元二次方程和函数关系式是解题的关键;明确正方形面积=边长×边长,长方形面积=长×宽;理解长方体盒子的底面是哪个长方形;解题时应该注意如何利用配方法求函数的最大值.23、(1)图见解析,点A
1
(-2,3);(2).【解析】试题分析:(1)根据将△AOB绕点O逆时针旋转90°后得到△A1OB1,得出点A1的坐标即可;(2)利用弧长公式求出点B经过的路径长即可.(1)如图,∴点A
1
(-2,3)(2)由勾股定理得,OB=
,∴弧长24、(1)见解析;(2)能,理由见解析.【分析】(1)根据已知利用有两个角相等的三角形相似判定即可;
(2)根据第一问可得到AD:AE=AC:AB,有一组公共角∠A,则可根据两组对应边的比相等且相应的夹角相等的两个三角形相似进行判定.【详解】证明:.证明:∵,分别是,边上的高,∴.∵,∴.若将,连接起来,则与能相似吗?说说你的理由.∵,∴.∴AD:AC=AE:AB∵,∴.【点睛】考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.25、(1)20;(2)26,980.【分析】(1)设该商品的标价为x元,根据按标价的八折销售该商品50件比按标价销售该商品50件所获得的利润少200元,列方程求解;(2)设该商品每天的销售利润为y元,销售价格定为每件x元,列出y关于x的函数解析式,求出顶点坐标即可得解.【详解】解:设该商品的标价为a元,由题意可得:,解得:;答:该商品的标价为20元;设该商品每天的销售利润为y元,销售价格定为每件x元,由题意可得:;,所以销售单价为26元时,商品的销售利润最大,最大利润是980元.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国防爆防漏电暖水袋行业投资前景及策略咨询研究报告
- 部编版一年级下册语文期末考试试卷及答案
- 校内体育比赛与初等教育的连接考核试卷
- 2024至2030年中国自动吸板机行业投资前景及策略咨询研究报告
- 《四足机器人设计与稳定性研究》
- 固体饮料行业的市场渠道合作成功案例考核试卷
- 2024-2030年中国楼宇对讲系统行业发展趋势商业模式创新分析报告
- 《沈阳市X地区社区低保家庭帮扶模式研究》
- 2024-2030年中国核桃露行业竞争策略及投资盈利预测报告
- 2024-2030年中国景观设计行业发展趋势及投资模式分析报告
- 设备签收单模版
- 2023中国建筑行业装配式建筑发展研究报告
- 建设工程监理费计算器(免费)
- 预防校园欺凌、预防校园性侵告家长书
- 软件系统项目监理报告
- 建筑工程施工检测试验计划
- 社会学概论课件十四讲社会问题
- 2023年多媒体应用设计师真题题库总结
- 测电阻的多种方法(修改)
- 基坑边坡支护安全技术交底
- 国开电大《农村社会学》形成考核1答案
评论
0/150
提交评论