2022-2023学年贵州省贵阳市名校九年级数学第一学期期末综合测试模拟试题含解析_第1页
2022-2023学年贵州省贵阳市名校九年级数学第一学期期末综合测试模拟试题含解析_第2页
2022-2023学年贵州省贵阳市名校九年级数学第一学期期末综合测试模拟试题含解析_第3页
2022-2023学年贵州省贵阳市名校九年级数学第一学期期末综合测试模拟试题含解析_第4页
2022-2023学年贵州省贵阳市名校九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如图所示,把一张矩形纸片对折,折痕为AB,再把以AB的中点O为顶点的平角三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是A.正三角形 B.正方形 C.正五边形 D.正六边形2.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A. B. C. D.3.某水库大坝高米,背水坝的坡度为,则背水面的坡长为()A.40米 B.60米 C.米 D.米4.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是()A. B.C. D.5.已知二次函数y=-x2+2mx+2,当x<-2时,y的值随x的增大而增大,则实数m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-26.下列图形中,既是轴对称图形,又是中心对称图形的是()A.平行四边形 B.圆 C.等边三角形 D.正五边形7.下列四个手机应用图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.已知函数,当时,<x<,则函数的图象可能是下图中的()A. B.C. D.9.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则的最小值是()A. B. C. D.1010.如图,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为()A.4 B.2.4 C.4.8 D.5二、填空题(每小题3分,共24分)11.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.12.函数沿直线翻折所得函数解析式为_____________.13.如图,在ABCD中,点E是AD边上一点,AE:ED=1:2,连接AC、BE交于点F.若S△AEF=1,则S四边形CDEF=_______.14.如图所示,在中,,点是重心,联结,过点作,交于点,若,,则的周长等于______.15.已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.16.如图,四边形ABCD是正方形,若对角线BD=4,则BC=_____.17.如图,分别以四边形ABCD的各顶点为圆心,以1长为半径画弧所截的阴影部分的面积的和是________.18.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.三、解答题(共66分)19.(10分)如图所示,分别切的三边、、于点、、,若,,.(1)求的长;(2)求的半径长.20.(6分)某校九年级学生参加了中考体育考试.为了了解该校九年级(1)班同学的中考体育成绩情况,对全班学生的中考体育成绩进行了统计,并绘制出以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题:分组分数段(分)频数A36≤x<412B41≤x<465C46≤x<5115D51≤x<56mE56≤x<6110(1)m的值为;(2)该班学生中考体育成绩的中位数落在组;(在A、B、C、D、E中选出正确答案填在横线上)(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.21.(6分)已知函数,请根据已学知识探究该函数的图象和性质过程如下:(1)该函数自变量的取值范围为;(2)下表列出y与x的几组对应值,请在平面直角坐标系中描出下列各点,并画出函数图象;x…-12…y…321…(3)结合所画函数图象,解决下列问题:①写出该函数图象的一条性质:;②横、纵坐标均为整数的点称为整点,若直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点,则b的取值范围为.22.(8分)某化肥厂2019年生产氮肥4000吨,现准备通过改进技术提升生产效率,计划到2021年生产氮肥4840吨.现技术攻关小组按要求给出甲、乙两种技术改进方案,其中运用甲方案能使每年产量增长的百分率相同,运用乙方案能使每年增长的产量相同.问运用哪一种方案能使2020年氮肥的产量更高?高多少?23.(8分)如图,四边形、、都是正方形.求证:;求的度数.24.(8分)市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第1次

第2次

第3次

第4次

第5次

第6次

10

9

8

8

10

9

10

10

8

10

7

9

(1)根据表格中的数据,分别计算出甲、乙两人的平均成绩;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.25.(10分)在一个不透明的袋子里,装有3个分别标有数字﹣1,1,2的乒乓球,他们的形状、大小、质地等完全相同,随机取出1个乒乓球.(1)写出取一次取到负数的概率;(2)小明随机取出1个乒乓球,记下数字后放回袋子里,摇匀后再随机取出1个乒兵球,记下数字.用画树状图或列表的方法求“第一次得到的数与第二次得到的数的积为正数”发生的概率.26.(10分)苏北五市联合通过网络投票选出了一批“最有孝心的美少年”.根据各市的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后两行中有一个数据是错误的.请回答下列问题:(1)统计表________,________;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)组委会决定从来自宿迁市的4位“最有孝心的美少年”中,任选两位作为苏北五市形象代言人,、是宿迁市“最有孝心的美少年”中的两位,问、同时入选的概率是多少?并请画出树状图或列出表格.区域频数频率宿迁4a连云港70.175淮安0.2徐州100.25盐城120.275

参考答案一、选择题(每小题3分,共30分)1、D【解析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D.【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.2、B【详解】解:由题意得:俯视图与选项B中图形一致.故选B.【点睛】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.3、A【解析】坡面的垂直高度h和水平宽度l的比叫做坡度(或坡比),我们把斜坡面与水平面的夹角叫做坡角,若用α表示,可知坡度与坡角的关系式,tanα(坡度)=垂直距离÷水平距离,根据公式可得水平距离,依据勾股定理可得问题的答案.【详解】∵大坝高20米,背水坝的坡度为1:,

∴水平距离=20×=20米.

根据勾股定理可得背水面的坡长为40米.

故选A.【点睛】本题考查解直角三角形的应用-坡度、坡角的有关知识,熟悉且会灵活应用坡度公式是解此题的关键.4、A【分析】连接OP,根据条件可判断出PO⊥AB,即AP是定值,与x的大小无关,所以是平行于x轴的线段.要注意CE的长度是小于1而大于0的.【详解】连接OP,∵OC=OP,∴∠OCP=∠OPC.∵∠OCP=∠DCP,CD⊥AB,∴∠OPC=∠DCP.∴OP∥CD.∴PO⊥AB.∵OA=OP=1,∴AP=y=(0<x<1).故选A.【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.5、C【解析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线∵,抛物线开口向下,∴当时,y的值随x值的增大而增大,∵当时,y的值随x值的增大而增大,∴,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.6、B【解析】根据中心对称图形和轴对称图形的概念对各项分析判断即可.【详解】平行四边形是中心对称图形,但不是轴对称图形,故A错误;圆既是轴对称图形又是中心对称图形,故B正确;等边三角形是轴对称图形,但不是中心对称图形,故C错误;正五边形是轴对称图形,但不是中心对称图形,故D错误.故答案为:B.【点睛】本题考查了轴对称图形和中心对称图形的定义,熟练掌握其定义是解题的关键.7、A【解析】A既是轴对称图形,又是中心对称图形;B是轴对称图形,不是中心对称图形;C既不是轴对称图形,也不是中心对称图形;D既不是轴对称图形,也不是中心对称图形;【详解】请在此输入详解!8、A【分析】先可判定a<0,可知=,=,可得∴a=6b,a=-6c,不妨设c=1,进而求出解析式,找出符合要求的答案即可.【详解】解:∵函数,当时,<x<,,∴可判定a<0,可知=+=,=×=∴a=6b,a=-6c,则b=-c,不妨设c=1,则函数为函数,即y=(x-2)(x+3),∴可判断函数的图像与x轴的交点坐标是(2,0),(-3,0),∴A选项是正确的.故选A.【点睛】本题考查抛物线和x轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键.9、B【解析】如图,作DH⊥AB于H,CM⊥AB于M.由tanA==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH=BD,推出CD+BD=CD+DH,由垂线段最短即可解决问题.【详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°,∵tanA==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a=2或-2(舍弃),∴BE=2a=4,∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE=4(等腰三角形两腰上的高相等))∵∠DBH=∠ABE,∠BHD=∠BEA,∴,∴DH=BD,∴CD+BD=CD+DH,∴CD+DH≥CM,∴CD+BD≥4,∴CD+BD的最小值为4.故选B.【点睛】本题考查解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.10、C【分析】连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【详解】连接BD,交AC于O点,∵四边形ABCD是菱形,∴AB=BC=CD=AD=5,∴∴∵AC=6,∴AO=3,∴∴DB=8,∴菱形ABCD的面积是∴BC⋅AE=24,故选C.二、填空题(每小题3分,共24分)11、①②④【解析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP=,由此可判断④.【详解】连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正确,故答案为①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12、【解析】函数沿直线翻折所得函数图像开口向下,只要根据轴对称的性质求出对称后的顶点坐标即可.【详解】∵=(x-1)2+3,∴其顶点坐标是(1,3),∵(1,3)关于直线的点的坐标是(1,-1),∴所得函数解析式为(x-1)2-1.故答案为:.【点睛】本题考查了二次函数的轴对称变换,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.13、11【分析】先根据平行四边形的性质易得,根据相似三角形的判定可得△AFE∽△CFB,再根据相似三角形的性质得到△BFC的面积,,进而得到△AFB的面积,即可得△ABC的面积,再根据平行四边形的性质即可得解.【详解】解:∵AE:ED=1:2,∴AE:AD=1:3,∵AD=BC,∴AE:BC=1:3,∵AD∥BC,∴△AFE∽△CFB,∴,∴,∴S△BCF=9,∵,∴S△AFB=3,∴S△ACD=S△ABC=S△BCF+S△AFB=12,∴S四边形CDEF=S△ACD﹣S△AEF=12﹣1=11.故答案为11.【点睛】本题主要考查相似三角形的判定与性质,平行四边形的性质等,解此题的关键在于熟练掌握其知识点.14、10【分析】延长AG交BC于点H,由G是重心,推出,再由得出,从而可求AD,DG,AG的长度,进而答案可得.【详解】延长AG交BC于点H∵G是重心,∴∵∴∵,AH是斜边中线,∴∴∴∴的周长等于故答案为:10【点睛】本题主要考查三角形重心的性质及平行线分线段成比例,掌握三角形重心的性质是解题的关键.15、0<m<13【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣512由y=﹣512x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣5设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125∴A(125即OA=125在Rt△OAB中,AB=OA过点O作OD⊥AB于D,∵S△ABO=12OD•AB=1∴12OD•135m=1∵m>0,解得OD=1213由直线与圆的位置关系可知1213m<6,解得m<13故答案为0<m<132【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.16、【分析】由正方形的性质得出△BCD是等腰直角三角形,得出BD=BC=4,即可得出答案.【详解】∵四边形ABCD是正方形,∴CD=BC,∠C=90°,∴△BCD是等腰直角三角形,∴BD=BC=4,∴BC=2,故答案为:2.【点睛】本题考查了正方形的性质以及等腰直角三角形的判定与性质;证明△BCD是等腰直角三角形是解题的关键.17、【分析】根据四边形内角和定理得图中四个扇形正好构成一个半径为1的圆,因此其面积之和就是圆的面积.【详解】解:∵图中四个扇形的圆心角的度数之和为四边形的四个内角的和,且四边形内角和为360°,∴图中四个扇形构成了半径为1的圆,∴其面积为:πr2=π×12=π.故答案为:π.【点睛】此题主要考查了四边形内角和定理,扇形的面积计算,得出图中阴影部分面积之和是半径为1的圆的面积是解题的关键.18、(-3,4)【详解】在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是(-3,4).故答案为(-3,4).【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反.三、解答题(共66分)19、(1)4;(2)2【分析】(1)设AD=x,根据切线长定理得到AF=AD,BE=BD,CE=CF,根据关系式列得方程解答即可;(2)连接OD、OE、OF、OA、OB、OC,将△ABC分为三个三角形:△AOB、△BOC、△AOC,再用面积法求得半径即可.【详解】解:(1)设,分别切的三边、、于点、、,,,,,,,,即,得,的长为.(2)如图,连接OD、OE、OF、OA、OB、OC,则OD⊥AB,OE⊥BC,OF⊥AC,且OD=OE=OF=2,∵,,,∴AB2+BC2=AC2,∴△ABC是直角三角形,且∠B是直角,∴△ABC的面积=,∴,∴OD=2,即的半径长为2.【点睛】此题考查圆的性质,切线长定理,利用面积法求得圆的半径,是一道圆的综合题.20、(1)18;(2)D组;(3)图表见解析,【分析】(1)利用C分数段所占比例以及其频数求出总数即可,进而得出m的值;(2)利用中位数的定义得出中位数的位置;(3)利用列表或画树状图列举出所有的可能,再根据概率公式计算即可得解.【详解】解:(1)由题意可得:全班学生人数:15÷30%=50(人);m=50﹣2﹣5﹣15﹣10=18(人);故答案为:18;(2)∵全班学生人数有50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段,∴落在D段故答案为:D;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1,A1A2B1A1(A1,A2)(A1,B1)A2(A2,A1)(A2,B1)B1(B1,A1)(B1,A2)∵共有6种等情况数,∴恰好选到一男一女的概率是==.【点睛】此题主要考查了列表法求概率以及扇形统计图的应用,根据题意利用列表法得出所有情况是解题关键.21、(1):x>-2;(2)见详解;(1)①当x>-2时,y随x的增加而减小;②2≤b<1.【分析】(1)x+2>0,即可求解;(2)描点画出函数图象即可;(1)①任意写出一条性质即可,故答案不唯一;②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),即可求解【详解】解:(1)x+2>0,解得:x>-2,故答案为:x>-2;(2)描点画出函数图象如下:(1)①当x>-2时,y随x的增加而减小(答案不唯一),故答案为:当x>-2时,y随x的增加而减小(答案不唯一),②如图2,当b=2时,直线y=-x+b的图象与该图象相交形成的封闭图形(包含边界)内刚好有6个整点(图中空心点),故2≤b<1,故答案为:2≤b<1.【点睛】本题考查的是一次函数图象与系数的关系,这种探究性题目,通常按照题设的顺序逐次求解,通常比较容易.22、乙方案能使2020年氮肥的产量更高,高20吨【分析】设甲方案的平均增长率为,根据题意列出方程,求出x的值,即可求出甲方案2020年产量,再根据题意求出乙方案2020年产量,比较即可得出结论.【详解】解:设甲方案的平均增长率为,依题意得.解得,,(不合题意,舍去).甲方案2020年产量:,乙方案2020年产量:.,(吨).答:乙方案能使2020年氮肥的产量更高,高20吨.【点睛】此题考查的是一元二次方程的应用,掌握增长率问题的公式是解决此题的关键.23、(1)见解析;(2)45°.【分析】(1)设正方形的边长为a,求出AC的长为a,再求出△ACF与△GCA中∠ACF的两边的比值相等,根据两边对应成比例、夹角相等,两三角形相似,即可判定△ACF与△GCA相似;(2)根据相似三角形的对应角相等可得∠1=∠CAF,再根据三角形的一个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论