




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(
)A.4 B.3 C.2 D.2.下列二次根式中,与是同类二次根式的是A. B. C. D.3.某市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所数据120000000用科学记数法表示为()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1094.在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(-3,2)5.一元二次方程x2-8x-1=0配方后为()A.(x-4)2=17 B.(x+4)2=15C.(x+4)2=17 D.(x-4)2=17或(x+4)2=176.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变 B.团队日工资的方差不变C.团队日工资的中位数不变 D.团队日工资的极差不变7.如图,在平行四边形中,点是边上一点,且,交对角线于点,则等于()A. B. C. D.8.如图所示几何体的左视图正确的是()A. B. C. D.9.若一个正多边形的边长与半径相等,则这个正多边形的中心角是()A.45° B.60° C.72° D.90°10.下列计算,正确的是()A.a2·a3=a6 B.3a2-a2=2 C.a8÷a2=a4 D.(a2)3=a6二、填空题(每小题3分,共24分)11.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则不等式ax2>bx+c的解集是_________.12.如图,已知电流在一定时间段内正常通过电子元件“”的概率是12,在一定时间段内,A,B之间电流能够正常通过的概率为.13.如图,正方形的边长为,在边上分别取点,,在边上分别取点,使.....依次规律继续下去,则正方形的面积为__________.14.如图,在Rt△ABC中,∠BAC=90°,且BA=6,AC=8,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为_____.15.已知点与点关于原点对称,则__________.16.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为________.17.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________18.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.三、解答题(共66分)19.(10分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量(辆小时)指单位时间内通过道路指定断面的车辆数;速度(千米小时)指通过道路指定断面的车辆速度,密度(辆千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量与速度之间关系的部分数据如下表:速度v(千米/小时)流量q(辆/小时)(1)根据上表信息,下列三个函数关系式中,刻画,关系最准确是_____________________.(只填上正确答案的序号)①;②;③(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知,,满足,请结合(1)中选取的函数关系式继续解决下列问题:市交通运行监控平台显示,当时道路出现轻度拥堵.试分析当车流密度在什么范围时,该路段将出现轻度拥堵?20.(6分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线.(2)若⊙O的半径为3cm,∠C=30°,求图中阴影部分的面积.21.(6分)某公司销售某一种新型通讯产品,已知每件产品的进价为4万元,每月销售该种产品的总开支(不含进价)总计11万元,在销售过程中发现,月销售量(件)与销售单价(万元)之间存在着如图所示的一次函数关系(1)求关于的函数关系式.(2)试写出该公司销售该种产品的月获利(万元)关于销售单价(万元)的函数关系式,当销售单价为何值时,月获利最大?并求这个最大值.(月获利=月销售额一月销售产品总进价一月总开支)22.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.(8分)如图,抛物线y=ax2+2x+c(a<0)与x轴交于点A和点B(点A在原点的左侧,点B在原点的右侧),与y轴交于点C,OB=OC=1.(1)求该抛物线的函数解析式;(2)如图1,连接BC,点D是直线BC上方抛物线上的点,连接OD,CD,OD交BC于点F,当S△COF:S△CDF=1:2时,求点D的坐标.(1)如图2,点E的坐标为(0,),在抛物线上是否存在点P,使∠OBP=2∠OBE?若存在,请直接写出符合条件的点P的坐标;若不存在,请说明理由.24.(8分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,.(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,,求的半径.25.(10分)如图,中,,,面积为1.(1)尺规作图:作的平分线交于点;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点到两条直角边的距离.26.(10分)用适当的方法解下方程:
参考答案一、选择题(每小题3分,共30分)1、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.2、C【分析】根据同类二次根式的定义即可判断.【详解】A.=,不符合题意;B.,不符合题意;C.=,符合题意;D.=,不符合题意;故选C.【点睛】此题主要考查同类二次根式的识别,解题的关键是熟知二次根式的性质进行化简.3、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120000000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、B【解析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)”解答.【详解】根据中心对称的性质,得点P(2,-3)关于原点对称的点的坐标是(-2,3).故选B.【点睛】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.5、A【解析】x2-8x-1=0,移项,得x2-8x=1,配方,得x2-8x+42=1+42,即(x-4)2=17.故选A.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.6、B【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:=280;调整后的平均数是:=280;故A正确;调整前的方差是:=;调整后的方差是:=;故B错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.7、A【分析】根据平行四边形的性质和相似三角形的性质解答即可.【详解】解:∵四边形是平行四边形,,∴AD∥BC,AD=BC=3ED,∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故选:A.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,属于常考题型,熟练掌握相似三角形的判定和性质是解题的关键.8、A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可.【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线.故选A.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图9、B【分析】利用正多边形的边长与半径相等得到正多边形为正六边形,然后根据正多边形的中心角定义求解.【详解】解:因为正多边形的边长与半径相等,所以正多边形为正六边形,因此这个正多边形的中心角为60°.
故选B.【点睛】本题主要考查的是正多边形的中心角的概念,正确的理解正多边形的边长与半径相等得到正多边形为正六边形是解决问题的关键.10、D【分析】按照整式乘法、合并同类项、整式除法、幂的乘方依次化简即可得到答案.【详解】A.a2·a3=a5,故该项错误;B.3a2-a2=2a2,故该项错误;C.a8÷a2=a6,故该项错误;D.(a2)3=a6正确,故选:D.【点睛】此题考查整式的化简计算,熟记整式乘法、合并同类项、整式除法、幂的乘方的计算方法即可正确解答.二、填空题(每小题3分,共24分)11、x<-2或x>1【分析】根据图形抛物线与直线的两个交点情况可知,不等式的解集为抛物线的图象在直线图象的上方对应的自变量的取值范围.【详解】如图所示:
∵抛物线与直线的两个交点坐标分别为,
∴二次函数图象在一次函数图象上方时,即不等式的解集为:或.
故答案为:或.【点睛】本题主要考查了二次函数与不等式组.解答此题时,利用了图象上的点的坐标特征来解不等式.12、34【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是12即某一个电子元件不正常工作的概率为12则两个元件同时不正常工作的概率为14故在一定时间段内AB之间电流能够正常通过的概率为1-14=3故答案为:3413、【分析】利用勾股定理可得A1B12=a2,即正方形A1B1C1D1的面积,同理可求出正方形A2B2C2D2的面积,得出规律即可得答案.【详解】∵正方形ABCD的边长为a,,∴A1B12=A1B2+BB12==a2,A1B1=a,∴正方形A1B1C1D1的面积为a2,∵,∴A2B22==()2a2,∴正方形A2B2C2D2的面积为()2a2,……∴正方形的面积为()na2,故答案为:()na2【点睛】本题考查正方形的性质及勾股定理,正确计算各正方形的面积并得出规律是解题关键.14、【分析】由勾股定理求出BC的长,再证明四边形DMAN是矩形,可得MN=AD,根据垂线段最短和三角形面积即可解决问题.【详解】解:∵∠BAC=90°,且BA=6,AC=8,∴BC==10,∵DM⊥AB,DN⊥AC,∴∠DMA=∠DNA=∠BAC=90°,∴四边形DMAN是矩形,∴MN=AD,∴当AD⊥BC时,AD的值最小,此时,△ABC的面积=AB×AC=BC×AD,∴AD==,∴MN的最小值为;故答案为:.【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、1【分析】直接利用关于原点对称点的性质得出a,b的值,即可得出答案.【详解】解:∵点P(a,-6)与点Q(-5,3b)关于原点对称,
∴a=5,3b=6,
解得:b=2,
故a+b=1.
故答案为:1.【点睛】此题考查关于原点对称点的性质,正确记忆横纵坐标的关系是解题关键.16、【详解】连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA,即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1=,故答案为考点:1.相似三角形的判定与性质;2.等边三角形的性质17、1【解析】∵a=3,b=4,c=5,∴a2+b2=c2,∴∠ACB=90°,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,∵S△ACB=S△AOC+S△AOB+S△BOC,∴×AC×BC=×AC×OE+×AB×OF+×BC×OD,∴3×4=4R+5R+3R,解得:R=1.故答案为1.18、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.三、解答题(共66分)19、(1)答案为③;(2)v=30时,q达到最大值,q的最大值为1;(3)84<k≤2【分析】(1)根据一次函数,反比例函数和二次函数的性质,结合表格数据,即可得到答案;(2)把二次函数进行配方,即可得到答案;(3)把v=12,v=18,分别代入二次函数解析式,求出q的值,进而求出对应的k值,即可得到答案.【详解】(1)∵,q随v的增大而增大,∴①不符合表格数据,∵,q随v的增大而减小,∴②不符合表格数据,∵,当q≤30时,q随v的增大而增大,q≥30时,q随v的增大而减小,∴③基本符合表格数据,故答案为:③;(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1,且﹣2<0,∴当v=30时,q达到最大值,q的最大值为1.答:当该路段的车流速度为30千米/小时,流量达到最大,最大流量是1辆/小时.(3)当v=12时,q=﹣2×122+120×12=1152,此时k=1152÷12=2,当v=18时,q=﹣2×182+120×18=1512,此时k=1512÷18=84,∴84<k≤2.答:当84<k≤2时,该路段将出现轻度拥堵.【点睛】本题主要考查二次函数的实际应用,理解二次函数的性质,是解题的关键.20、(1)见解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性质证出∠ODB=∠C.得出OD∥AC.由已知条件证出DE⊥OD,即可得出结论;(1)由垂径定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面积,再求出扇形BOD的面积,即可得出结果.【详解】(1)连接OD,如图1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.(1)过O作OF⊥BD于F,如图1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S阴=S扇形BOD﹣S△BOD==(3π﹣)cm1.【点睛】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、勾股定理、三角形和扇形面积的计算等知识;熟练掌握切线的判定,由垂径定理和勾股定理求出OF和DF是解决问题(1)的关键.21、(1);(2)当x=10万元时,最大月获利为7万元【分析】(1)根据函数图象,利用待定系数法求解可得;(2)根据“总利润=单价利润×销售量-总开支”列出函数解析式,由二次函数的性质可得最值.【详解】(1)设y=kx+b,将点(6,5)、(8,4)代入,得:,解得:,∴;(2)根据题意得:z=(x-4)y-11=(x-4)(-x+8)-11=-x2+10x-43=-(x-10)2+7,∴当x=10万元时,最大月获利为7万元.【点睛】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式及二次函数的图象和性质是解题的关键.22、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10﹣a)辆,由题意得,解得:,因为a是整数,所以a=6,7,8;则(10﹣a)=4,3,2;三种方案:①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.23、(1)y=﹣x2+2x+1;(2)点D(1,4)或(2,1);(1)当点P在x轴上方时,点P(,);当点P在x轴下方时,点(﹣,﹣)【分析】(1)c=1,点B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得a=﹣1即可得出答案;(2)由S△COF:S△CDF=1:2得OF:FD=1:2,由DH∥CO得CO:DM=1:2,求得DM=2,而DM==2,即可求解;(1)分点P在x轴上方、点P在x轴下方两种情况,分别求解即可.【详解】(1)∵OB=OC=1,∴点C的坐标为C(0,1),c=1,点B的坐标为B(1,0),将点B的坐标代入抛物线表达式:y=ax2+2x+1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+1;(2)如图,过点D作DH⊥x轴于点H,交BC于点M,∵S△COF:S△CDF=1:2,∴OF:FD=1:2,∵DH∥CO,∴CO:DM=OF:FD=1:2,∴DM=CO=2,设直线BC的表达式为:,将C(0,1),B(1,0)代入得,解得:,∴直线BC的表达式为:y=﹣x+1,设点D的坐标为(x,﹣x2+2x+1),则点M(x,﹣x+1),∴DM==2,解得:x=1或2,故点D的坐标为:(1,4)或(2,1);(1)①当点P在x轴上方时,取OG=OE,连接BG,过点B作直线PB交抛物线于点P,交y轴于点M,使∠GBM=∠GBO,则∠OBP=2∠OBE,过点G作GH⊥BM,如图,∵点E的坐标为(0,),∴OE=,∵∠GBM=∠GBO,GH⊥BM,GO⊥OB,∴GH=GO=OE=,BH=BO=1,设MH=x,则MG=,在△OBM中,OB2+OM2=MB2,即,解得:x=2,故MG==,则OM=MG+GO=+,点M的坐标为(0,4),设直线BM的表达式为:,将点B(1,0)、M(0,4)代入得:,解得:,∴直线BM的表达式为:y=x+4,解方程组解得:x=1(舍去)或,将x=代入y=x+4得y=,故点P的坐标为(,);②当点P在x轴下方时,如图,过点E作EN⊥BP,直线PB交y轴于点M,∵∠OBP=2∠OBE,∴BE是∠OBP的平分线,∴EN=OE=,BN=OB=1,设MN=x,则ME=,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二班级班主任教学工作方案
- 关节镜的护理查房
- 2025年个人学校工作方案
- 酒店消防知识培训课件
- 酒店帐篷知识培训课件
- 2025年幼儿园小班六月份工作方案参考
- 1、中医药膳基础1、中医药膳基础
- 四川省泸州市2025届高三第二次模拟考试英语试题(详细答案版)含解析
- 郑州财税金融职业学院《物理课程理论与课程开发》2023-2024学年第二学期期末试卷
- 河北省承德市丰宁满族自治县2025年初三质量普查调研考试英语试题试卷含答案
- 2025年合肥兴泰金融控股(集团)有限公司招聘23人笔试参考题库附带答案详解
- 2025年山东省淄博市张店区中考一模道德与法治试题(五四学制)(含答案)
- 安徽省合肥市2025届高三下学期3月二模试题 地理 含解析
- 定期考核医师述职报告范文5篇
- 2025届湖北省武汉市高考数学一模试卷含解析
- 2024年广西高考生物试卷真题(含答案)
- 承插型盘扣式脚手架安全知识培训
- 常用钢制管件弯头、三通、异径管、管帽理论重量体积表
- 最新版个人征信报告模板-2020年-word版-可编辑-带水印(共7页)
- 天然烟用香料的芳香组分和提取工艺分析
- 连杆加工工艺详解.PPT
评论
0/150
提交评论