2023届广西陆川县联考数学九上期末综合测试模拟试题含解析_第1页
2023届广西陆川县联考数学九上期末综合测试模拟试题含解析_第2页
2023届广西陆川县联考数学九上期末综合测试模拟试题含解析_第3页
2023届广西陆川县联考数学九上期末综合测试模拟试题含解析_第4页
2023届广西陆川县联考数学九上期末综合测试模拟试题含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列四个几何体中,主视图是三角形的是()A. B. C. D.2.如图,一个几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为()A. B. C. D.3.如图,一次函数的图象与反比例函数(为常数且)的图象都经过,结合图象,则不等式的解集是()A. B.C.或 D.或4.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.5.如图,点,,都在上,若,则为()A. B. C. D.6.如图所示的工件,其俯视图是()A. B. C. D.7.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.48.如图,线段是⊙的直径,弦,垂足为,点是上任意一点,,则的值为()A. B. C. D.9.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.10.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A.3 B.4 C.4.8 D.511.已知x=1是方程x2+px+1=0的一个实数根,则p的值是()A.0 B.1 C.2 D.﹣212.如图,点D,E分别在△ABC的AB,AC边上,增加下列哪些条件,①∠AED=∠B,②,③,使△ADE与△ACB一定相似()A.①② B.② C.①③ D.①②③二、填空题(每题4分,共24分)13.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=1.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是(写出所有正确结论的序号).14.某学校的初三(1)班,有男生20人,女生23人.现随机抽一名学生,则:抽到一名男生的概率是_____.15.如图,在平面直角坐标系中,CO、CB是⊙D的弦,⊙D分别与轴、轴交于B、A两点,∠OCB=60º,点A的坐标为(0,1),则⊙D的弦OB的长为____________。16.点是线段的黄金分割点,若,则较长线段的长是_____.17.如图,⊙O的内接四边形ABCD中,∠A=110°,则∠BOD等于________°.18.已知,其相似比为2:3,则他们面积的比为__________.三、解答题(共78分)19.(8分)某体育看台侧面的示意图如图所示,观众区的坡度为,顶端离水平地面的高度为,从顶棚的处看处的仰角,竖直的立杆上、两点间的距离为,处到观众区底端处的水平距离为.求:(1)观众区的水平宽度;(2)顶棚的处离地面的高度.(,,结果精确到)20.(8分)如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点.(1)求反比例函数的解析式;(2)求的值.21.(8分)如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.22.(10分)如图,一次函数的图象与反比例函数在第一象限的图象交于和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且的面积为5,求点P的坐标.23.(10分)如图,已知点在反比例函数的图像上.(1)求a的值;(2)如果直线y=x+b也经过点A,且与x轴交于点C,连接AO,求的面积.24.(10分)小琴和小江参加学校举行的“经典诵读"比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片,记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.小琴诵读《论语》的概率是.请用列表法或画树状图(树形图)法求小琴和小江诵读两个不同材料的概率.25.(12分)如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.(1)探索:CE与BF有何数量关系和位置关系?并说明理由;(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.26.某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:售价x(元件)1011121314x销售量y(件)100908070(1)将上面的表格填充完整;(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?

参考答案一、选择题(每题4分,共48分)1、B【解析】主视图是三角形的一定是一个锥体,只有B是锥体.故选B.2、D【分析】这个几何体的侧面是以底面圆周长为长、圆柱体的高为宽的矩形,根据矩形的面积公式计算即可.【详解】根据三视图可得几何体为圆柱,圆柱体的侧面积=底面圆的周长圆柱体的高=故答案为:D.【点睛】本题考查了圆柱体的侧面积问题,掌握矩形的面积公式是解题的关键.3、C【分析】根据一次函数图象在反比例函数图象上方的的取值范围便是不等式的解集.【详解】解:由函数图象可知,当一次函数的图象在反比例函数(为常数且)的图象上方时,的取值范围是:或,∴不等式的解集是或.故选C.【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.4、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.此图案既不是轴对称图形,也不是中心对称图形;

B.此图案既不是轴对称图形,也不是中心对称图形;

C.此图案既是轴对称图形,又是中心对称图形;

D.此图案仅是轴对称图形;

故选:C.【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5、D【分析】直接根据圆周角定理求解.【详解】∵∠C=34°,

∴∠AOB=2∠C=68°.

故选:D.【点睛】此题考查圆周角定理,解题关键在于掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.6、B【解析】试题分析:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选B.点睛:本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线.7、B【解析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.8、D【分析】只要证明∠CMD=△COA,求出cos∠COA即可.【详解】如图1中,连接OC,OM.设OC=r,∴,∴r=5,∵AB⊥CD,AB是直径,∴,∴∠AOC=∠COM,∵∠CMD=∠COM,∴∠CMD=∠COA,∴cos∠CMD=cos∠COA=.【点睛】本题考查了圆周角定理,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会转化的思想思考问题.9、B【分析】利用概率公式直接计算即可.【详解】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率.故选B.【点睛】本题考查概率的计算,掌握公式正确计算是本题的解题关键.10、D【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可.【详解】解:由图可得出,整理,得,解得,(不合题意,舍去).故选:D.【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.11、D【分析】把x=1代入x2+px+1=0,即可求得p的值.【详解】把x=1代入把x=1代入x2+px+1=0,得1+p+1=0,∴p=-2.故选D.【点睛】本题考查了一元二次方程的解得定义,能使一元二次方程成立的未知数的值叫作一元二次方程的解,熟练掌握一元二次方程解得定义是解答本题的关键.12、C【分析】根据相似三角形的判定方法即可一一判断;【详解】解:∵∠A=∠A,∠AED=∠B,

∴△AED∽△ABC,故①正确,

∵∠A=∠A,,

∴△AED∽△ABC,故③正确,

由②无法判定△ADE与△ACB相似,

故选C.【点睛】本题考查相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.二、填空题(每题4分,共24分)13、①②④.【解析】①∵AB是⊙O的直径,弦CD⊥AB,∴,DG=CG,∴∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED,故①正确;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2,故②正确;③∵AF=1,FG=2,∴AG==,∴在Rt△AGD中,tan∠ADG==,∴tan∠E=,故③错误;④∵DF=DG+FG=6,AD==,∴S△ADF=DF•AG=×6×,∵△ADF∽△AED,∴,∴=,∴S△AED=,∴S△DEF=S△AED﹣S△ADF=;故④正确.故答案为①②④.14、【分析】随机抽取一名学生总共有20+23=43种情况,其中是男生的有20种情况.利用概率公式进行求解即可.【详解】解:一共有20+23=43人,即共有43种情况,∴抽到一名男生的概率是.【点睛】本题考查了用列举法求概率,属于简单题,熟悉概率的计算公式是解题关键.15、【分析】首先连接AB,由∠AOB=90°,可得AB是直径,又由∠OAB=∠OCB=60°,然后根据含30°的直角三角形的性质,求得AB的长,然后根据勾股定理,求得OB的长.【详解】解:连接AB,

∵∠AOB=90°,

∴AB是直径,

∵∠OAB=∠OCB=60°,

∴∠ABO=30°,

∵点A的坐标为(0,1),

∴OA=1,

∴AB=2OA=2,

∴OB=,故选:C.【点睛】此题考查了圆周角定理以及勾股定理.注意准确作出辅助线是解此题的关键.16、【分析】根据黄金分割的概念得到较长线段,代入计算即可.【详解】∵C是AB的黄金分割点,

∴较长线段,∵AB=2cm,

∴P;

故答案为:.【点睛】本题考查了黄金分割,一个点把一条线段分成两段,其中较长线段是较短线段与整个线段的比例中项,那么就说这条线段被这点黄金分割,这个点叫这条线段的黄金分割点,并且较长线段是整个线段的倍.17、140【解析】试题解析::∵∠A=110°

∴∠C=180°-∠A=70°

∴∠BOD=2∠C=140°.18、4:1.【分析】根据相似三角形面积的比等于相似比的平方,从而可得答案.【详解】解:∵两个相似三角形的相似比为,∴这两个相似三角形的面积比为,故答案为:.【点睛】本题考查了相似三角形的性质,是基础题,熟记性质是解题的关键.三、解答题(共78分)19、(1)观众区的水平宽度为;(2)顶棚的处离地面的高度约为.【分析】(1)利用坡度的性质进一步得出,然后据此求解即可;(2)作于,于,则四边形、为矩形,再利用三角函数进一步求出EN长度,然后进一步求出答案即可.【详解】(1)观众区的坡度为,顶端离水平地面的高度为,∴,,答:观众区的水平宽度为;(2)如图,作于,于,则四边形、为矩形,m,m,m,在中,,则m,,答:顶棚的处离地面的高度约为.【点睛】本题主要考查了三角函数的实际应用,熟练掌握相关方法是解题关键.20、(1);(2).【分析】(1)设点D的坐标为(4,m)(m>0),则点A的坐标为(4,3+m),由C为OA的中点可表示出点C的坐标,根据C、D点在反比例函数图象上可得出关于k、m的二元一次方程租,解方程组即可得出结论;

(2)由m的值,可找出点A的坐标,由此即可得出线段OB、AB的长度,从而得出△OAB为等腰直角三角形,最后得出结果.【详解】解:(1)设点的坐标为,则点的坐标为.点为线段的中点,点的坐标为.点均在反比例函数的图象上,,解得,反比例函数的解析式为;(2),点的坐标为,,∴△OAB是等腰直角三角形,.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、解直角三角形以及待定系数法求函数解析式等知识点,解决该题型题目时,利用反比例函数图象上点的坐标特征找出方程组,通过解方程组得出点的坐标,再利用待定系数法求出函数解析式即可.21、(1),B点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b,由A点坐标可求得c,则可求得抛物线解析式;再令y=0可求得B点坐标;(2)①用t可表示出ON和OM,则可表示出P点坐标,即可表示出PM的长,由矩形的性质可得ON=PM,可得到关于t的方程,可求得t的值;②由题意可知OB=OA,故当△BOQ为等腰三角形时,只能有OB=BQ或OQ=BQ,用t可表示出Q点的坐标,则可表示出OQ和BQ的长,分别得到关于t的方程,可求得t的值.【详解】(1)∵抛物线对称轴是直线x=1,∴﹣=1,解得b=2,∵抛物线过A(0,3),∴c=3,∴抛物线解析式为,令y=0可得,解得x=﹣1或x=3,∴B点坐标为(3,0);(2)①由题意可知ON=3t,OM=2t,∵P在抛物线上,∴P(2t,),∵四边形OMPN为矩形,∴ON=PM,∴3t=,解得t=1或t=﹣(舍去),∴当t的值为1时,四边形OMPN为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴OQ=,BQ=|2t﹣3|,又由题意可知0<t<1,当OB=QB时,则有|2t﹣3|=3,解得t=(舍去)或t=;当OQ=BQ时,则有=|2t﹣3|,解得t=;综上可知当t的值为或时,△BOQ为等腰三角形.22、(1)(2)P的坐标为或【分析】(1)利用点A在上求a,进而代入反比例函数求k即可;(2)设,求得C点的坐标,则,然后根据三角形面积公式列出方程,解方程即可.【详解】(1)把点代入,得,∴把代入反比例函数,∴;∴反比例函数的表达式为;(2)∵一次函数的图象与x轴交于点C,∴,设,∴,∴,∴或,∴P的坐标为或.【点睛】本题考查了反比例函数与一次函数的交点问题,用待定系数法求出反比例函数的解析式等知识点,能用待定系数法求出反比例函数的解析式是解此题的关键.23、(1)2;(2)1【分析】(1)将A坐标代入反比例函数解析式中,即可求出a的值;(2)由(1)求出的a值,确定出A坐标,代入直线解析式中求出b的值,令直线解析式中y=0求出x的值,确定出OC的长,△AOC以OC为底,A纵坐标为高,利用三角形面积公式求出即可.【详解】(1)将A(1,a)代入反比例解析式得:;(2)由a=2,得到A(1,2),代入直线解析式得:1+b=2,解得:b=1,即直线解析式为y=x+1,令y=0,解得:x=-1,即C(-1,0),OC=1,则S△AOC=×1×2=1.【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,三角形的面积求法,熟练掌握待定系数法是解本题的关键.24、;【分析】(1)由题意直接根据概率公式即可求解;(2)利用列表法展示所有9种等可能性结果,再找出小琴和小江诵读两个不同材料的结果数,然后根据概率公式求解.【详解】解:小琴诵读《论语》的概率=;故答案为.方法一,列表如下小琴小江共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料)方法二,画树状图如下共有种等可能情况,两人选中不同材料的有种,所以概率为(选中不同材料).【点睛】本题考查列表法与树状图法即利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.25、(1)CE=BF,CE⊥BF,理由见解析;(2)【分析】(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.【详解】(1)CE=BF,CE⊥BF,理由如下:∵∠BAC=∠EAF=90°,∴∠EAC=∠FAB,又∵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论