下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——高三数学必备知识点整理奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。下面是我给大家带来的(高三数学)必备学识点整理,以供大家参考!
高三数学必备学识点整理
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不可怜况如下:假设a为任意实数,那么函数的定义域为大于0的全体实数;假设a为负数,那么x断定不能为0,不过这时函数的定义域还务必根[据q的奇偶性来确定,即假设同时q为偶数,那么x不能小于0,这时函数的定义域为大于0的全体实数;假设同时q为奇数,那么函数的定义域为不等于0的全体实数。当x为不同的数值时,幂函数的值域的不可怜况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,那么只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。
性质:
对于a的取值为非零有理数,有必要分成几种处境来议论各自的特性:
首先我们知道假设a=p/q,q和p都是整数,那么x^(p/q)=q次根号(x的p次方),假设q是奇数,函数的定义域是R,假设q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,那么x=1/(x^k),鲜明x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
摈弃了为0与负数两种可能,即对于x0,那么a可以是任意实数;
摈弃了为0这种可能,即对于x
摈弃了为负数这种可能,即对于x为大于且等于0的全体实数,a就不能是负数。
高三数学整理学识点
1.得志二元一次不等式(组)的x和y的取值构成有序数对(x,y),称为二元一次不等式(组)的一个解,全体这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集。
2.二元一次不等式(组)的每一个解(x,y)作为点的坐标对应平面上的一个点,二元一次不等式(组)的解集对应平面直角坐标系中的一个半平面(平面区域)。
3.直线l:Ax+By+C=0(A、B不全为零)把坐标平面划分成两片面,其中一片面(半个平面)对应二元一次不等式Ax+By+C0(或≥0),另一片面对应二元一次不等式Ax+By+C0(或≤0)。
4.已知平面区域,用不等式(组)表示它,其(方法)是:在全体直线外任取一点(如此题的原点(0,0)),将其坐标代入Ax+By+C,判断正负就可以确定相应不等式。
5.一个二元一次不等式表示的平面区域是相应直线划分开的半个平面,一般用特殊点代入二元一次不等式检验就可以判定,当直线不过原点时常选原点检验,当直线过原点时,常选(1,0)或(0,1)代入检验,二元一次不等式组表示的平面区域是它的各个不等式所表示的平面区域的公共片面,留神边界是实线还是虚线的含义。“线定界,点定域”。
6.得志二元一次不等式(组)的整数x和y的取值构成的有序数对(x,y),称为这个二元一次不等式(组)的一个解。全体整数解对应的点称为整点(也叫格点),它们都在这个二元一次不等式(组)表示的平面区域内。
7.画二元一次不等式Ax+By+C≥0所表示的平面区域时,应把边界画成实线,画二元一次不等式Ax+By+C0所表示的平面区域时,应把边界画成虚线。
8.若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的同侧,那么Ax0+By0+C与Ax1+Byl+C符号一致;若点P(x0,y0)与点P1(x1,y1)在直线l:Ax+By+C=0的两侧,那么Ax0+By0+C与Ax1+Byl+C符号相反。
9.从实际问题中抽象出二元一次不等式(组)的步骤是:
(1)根据题意,设出变量;
(2)分析问题中的变量,并根据各个不等关系列出常量与变量x,y之间的不等式;
(3)把各个不等式连同变量x,y有意义的实际范围合在一起,组成不等式组。
精选高三数学学识点(总结)
一个推导
利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
两式相减得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
两个防范
(1)由an+1=qan,q≠0并不能立刻断言{an}为等比数列,还要验证a1≠0.
(2)在运用等比数列的前n项和公式时,务必留神对q=1与q≠1分类议论,防止因疏忽q=1这一特殊情形导致解题失误.
三种方法
等比数列的判断方法有:
(1)定义法:若an+1/an=q(q为非零常数)或an/an-1=q(q为非零常数且n≥2且n∈N_),那么{an}是等比数列.
(2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_),那么数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年学术交流与合作协议
- 2024年国际航空运输货物代理合同
- 2024室内门采购合同
- 2024建筑设计工程合同范本
- 2024年公园景观亮化施工合同
- 2024-2025学年新教材高中政治第三单元全面依法治国第八课第1课时法治国家作业含解析新人教版必修3
- 统考版2025届高考物理二轮复习小题提升精练23电磁感应中的图象与电路问题含解析
- 2024-2025学年高中数学第2章数列2.4第2课时等比数列的性质学案含解析新人教A版必修5
- 2024-2025学年高中历史第六单元现代中国的政治建设与祖国统一第20课新中国的民主政治建设课时作业含解析新人教版必修1
- 2024年居间服务合同蓝本:行业规范实践指南
- PCBA工艺管制制程稽查表
- 临床实践教学设计临床病例讨论与分析
- 小学呼吸道传染预防课件
- 幼儿园教职工消防培训课件
- 《朱兰质量手册》课件
- 勘察设计单位管理制度模版
- 手术室压力性损伤预防
- 2024年中国铁塔湖北分公司招聘笔试参考题库含答案解析
- 生产设备搬迁方案
- 小学生如何在公园展现文明礼仪
- 2024年中煤集团招聘笔试参考题库含答案解析
评论
0/150
提交评论