新北师大版七年级数学下册全册教案_第1页
新北师大版七年级数学下册全册教案_第2页
新北师大版七年级数学下册全册教案_第3页
新北师大版七年级数学下册全册教案_第4页
新北师大版七年级数学下册全册教案_第5页
已阅读5页,还剩117页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2015—2016学年度第二学期教学进度任课教师:学科:数学年(班)级:周次日期教学内容课时备注12.15---2.16同底数幂的乘法122.17---2.21幂的乘方及积的乘方—同底数幂的除法532.24---2.28整式的乘法—平方差公式543.3—3.7完全平方公式—回忆及思索553.10---3.14两条直线的位置关系—探究直线平行的条件563.17---3.21探究直线平行的条件—平行线的性质573.24—3.28回忆及思索—相识三角形583.31---4.4图形的全等—探究三角形全等的条件4清明节94.7---4.11探究三角形全等的条件—用尺规作三角形5104.14---4.18利用三角形全等测间隔—回忆及思索5114.21—4.25复习期中考试3124.28---5.2用表格表示的变量间关系—用关系式表示的变量间关系4劳动节135.5---5.9用图象表示的变量间关系—回忆及思索5145.12---5.16轴对称现象—探究轴对称的性质5155.19---5.23简洁的轴对称图形5165.26---5.30利用轴对称进展设计—回忆及思索5176.2---6.6感受可能性—概率的稳定性5186.9---6.13等可能事务发生的概率—回忆及思索5196.16—6.20总复习5206.23---6.27期末考试5本学期总目的:培育学生良好的学习习惯,进步他们学习数学的热忱,力争获得一个比拟优异的学习成果教研组长签字:说明:此表一式两份,一份作为教案附件之一粘贴在教案本上,一份上交教务处。1.1同底数幂的乘法教学目的:学问及技能:使学生在理解同底数幂乘法意义的根底上,驾驭幂的运算性质(或称法则),进展根本运算。过程及方法:在推导“性质”的过程中,培育学生视察、概括及抽象的实力。情感、看法、价值观:进步学生学习数学的爱好。教学重点和难点:幂的运算性质.教学过程:一、实例导入:二、温故:2.,指出下列各式的底数及指数:(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.其中,(-2)3及-23的含义是否一样?结果是否相等?(-2)4及-24呢?三、知新:1.利用乘方的意义,提问学生,引出法则计算103×102.解:103×102=(10×10×10)×(10×10)(幂的意义)=10×10×10×10×10 (乘法的结合律)=105.2.引导学生建立幂的运算法则将上题中的底数改为a,则有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.用字母m,n表示正整数,则有即am·an=am+n.3.引导学生剖析法则(1)等号左边是什么运算?(2)等号两边的底数有什么关系?(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么(5)当三个以上同底数幂相乘时,上述法则是否成立?要求学生叙述这个法则:同底数幂相乘,底数不变,指数相加。留意:强调幂的底数必需一样,相乘时指数才能相加.四、稳固:例1计算:(1)(-3)7×(-3)6;(2)(1/111)3×(1/111).(3)-x3·x5 (4)b2m·b2m+1..例2、光在真空中的速度约为3×108米/秒,泰阳光照耀到地球上大约须要5×102秒,地球间隔太阳大约有多远?五、拓展:1、计算:(1)105·106;(2)a7·a3;(3)y3·y2;(4)b5·b;(5)a6·a6;(6)x5·x5.2、计算:(1)y12·y6;(2)x10·x;(3)x3·x9;(4)10·102·104;(5)y4·y3·y2·y;(6)x5·x6·x3.六、课堂小结:1.同底数幂相乘,底数不变,指数相加,对这个法则要留意理解“同底、相乘、不变、相加”这八个字.2.解题时要留意a的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a2的底数a,不是-a.计算-a2·a2的结果是-(a2·a2)=-a4,而不是(-a)2+2=a4.5.若底数是多项式时,要把底数看成一个整体进展计算。七、板书设计:八、教学后记:1.2幂的乘方及积的乘方(1)教学目的:学问及技能:理解幂的乘方及积的乘方的运算性质,并能解决一些实际问题。过程及方法:经验探究幂的乘方及积的乘方的运算性质的过程,进一步体会幂的意义,开展推理实力和有条理的表达实力。情感、看法、价值观:进步学生学习数学的爱好。教学重点:会进展幂的乘方的运算。教学难点:幂的乘方法则的总结及运用。教学方法:尝试练习法,探讨法,归纳法。活动打算:课件教学过程:一、温故:计算(1)(x+y)2·(x+y)3(2)x2·x2·x+x4·x(3)(0.75a)3·(a)4(4)x3·xn-1-xn-2·x4通过练习的方式,先让学生复习乘方的学问,并紧接着利用乘方的学问探究新课的内容。二、知新:1、64表示_________个___________相乘.(62)4表示_________个___________相乘.a3表示_________个___________相乘.(a2)3表示_________个___________相乘.在这个练习中,要引导学生视察,推想(62)4及(a2)3的底数、指数。并用乘方的概念解答问题。2、(62)4=________×_________×_______×________=__________(33)5=_____×_______×_______×________×_______=__________(a2)3=_______×_________×_______=__________(am)2=________×_________=__________(am)n=________×________×…×_______×__________=__________即(am)n=______________(其中m、n都是正整数)通过上面的探究活动,发觉了什么?幂的乘方,底数__________,指数__________.学生在探究练习的指引下,自主的完成有关的练习,并在练习中发觉幂的乘方的法则,从揣测到探究到理解法则的实际意义从而从本质上相识、学习幂的乘方的来历。教师应当激励学生自己发觉幂的乘方的性质特点(如底数、指数发生了怎样的变更)并运用自己的语言进展描绘。然后再让学生回忆这一性质的得来过程,进一步体会幂的意义。三、稳固:1、计算下列各题:(1)(102)3(2)(b5)5(3)(an)3(4)-(x2)m(5)(y2)3·y(6)2(a2)6-(a3)4学生在做练习时,不要激励他们干脆套用公式,而应让学生说明每一步的运算理由,进一步体会乘方的意义及幂的意义。推断题,错误的予以改正。(1)a5+a5=2a10()(2)(s3)3=x6()(3)(-3)2·(-3)4=(-3)6=-36()(4)x3+y3=(x+y)3()(5)[(m-n)3]4-[(m-n)2]6=0()学生通过练习稳固刚刚学习的新学问。在此根底上加深学问的应用.四、拓展:1、计算5(P3)4·(-P2)3+2[(-P)2]4·(-P5)2[(-1)m]2n+1m-1+02002―(―1)1990若(x2)n=x8,则m=_____________.、若[(x3)m]2=x12,则m=_____________。若xm·x2m=2,求x9m的值。若a2n=3,求(a3n)4的值。6、已知am=2,an=3,求a2m+3n的值.五、课堂小结:会进展幂的乘方的运算。六、作业设计:课本P6习题1.2:1、2七、板书设计:八、教学后记:1.2幂的乘方及积的乘方(2)教学目的:学问及技能:理解积的乘方的运算性质,并能解决一些实际问题。过程及方法:经验探究积的乘方的运算的性质的过程,进一步体会幂的意义,开展推理实力和有条理的表达实力。情感、看法、价值观:进步学生学习数学的爱好。教学重点:积的乘方的运算教学难点:正确区分幂的乘方及积的乘方的异同。教学方法:探究、猜测、理论法教学用具:课件教学过程:一、温故:1、计算下列各式:(1)(2)(3)(4)(5)(6)2、下列各式正确的是()(A)(B)(C)(D)二、知新:计算:计算:计算:从上面的计算中,你发觉了什么规律?_________________________4、猜一猜填空:(1)(2)(3)你能推出它的结果吗?结论:积的乘方等于把各个因式分别乘方,再把所得的幂相乘。三、稳固:计算下列各题:(1)(2)(3)(4)计算下列各题:(1)(2)(3)(4)(5)(6)四、拓展:计算下列各题:(1)(2)(3)(4)(5)(6)五、课堂小结:本节课学习了积的乘方的性质及应用,要留意它及幂的乘方的区分。六、作业设计:第8页习题1、2、3。七、板书设计:八、教学后记:1.3同底数幂的除法教学目的:学问及技能:理解同底数幂的除法的运算性质,并能解决一些实际问题。过程及方法:经验探究同底数幂的除法的运算性质的过程,进一步体会幂的意义。情感、看法、价值观:开展推理实力和有条理的表达实力。教学重点:会进展同底数幂的除法运算。教学难点:同底数幂的除法法则的总结及运用。教学方法:尝试练习法,探讨法,归纳法。教学过程:一、温故:1、填空:(1)(2)2(3)2、计算:(1)(2)二、知新:(1)(2)(3)(4)猜一猜:同底数幂相除,底数(),指数()负指数幂和零指数幂的意义,我们规定a0=1(a≠0)a-p=1/ap(a≠0,p是正整数)三、稳固:1、计算:(1)(2)(3)(4)2、用小数或分数表示下列各数:(1)(2)(3)(4)4.2(6)四、拓展:1、已知2、若3、(1)若=(2)若(3)若0.0000003=3×,则(4)若五、课堂小结:会进展同底数幂的除法运算。六、作业设计:七、板书设计:八、教学后记:1.4整式的乘法(1)教学目的:学问及技能:使学生理解并驾驭单项式的乘法法则,可以娴熟地进展单项式的乘法计算;过程及方法:留意培育学生归纳、概括实力,以及运算实力.情感、看法、价值观:进步学生学习数学的爱好。教学重点和难点:准确、快速地进展单项式的乘法运算.教学过程:一、温故:1.下列代数式中,哪些是单项式?哪些不是?2.下列单项式的系数和次数分别是多少?3.利用乘法的交换律、结合律计算6×4×13×25.4.前面学习了哪三种幂的乘法运算法则?内容是什么?二、知新:1.探究法则利用乘法交换律、结合律以及前面所学的幂的乘法运算的性质,计算下列单项式乘以单项式:(1)2x2y·3xy2(2)4a2x5·(-3a3bx)2、归纳法则单项式及单项式相乘,把它的系数、一样字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式.3.剖析法则(1)法则实际分为三点:①系数相乘——有理数的乘法;②一样字母相乘——同底数幂的乘法;③只在一个单项式中含有的字母,连同它的指数作为积的一个因式,不能丢掉这个因式.(2)不管几个单项式相乘,都可以用这个法则.(3)单项式相乘的结果仍是单项式.三、稳固:例1计算:(1)2xy2·1/3xy;(2)-2a2b3·(-3a);(3)7xy2z·(2xyz)2.四、拓展:1.计算:(1) 3x5·5x3;(2)4y·(-2xy3);(3)(3x2y)3·(-4xy2);(4)(-xy2z3)4·(-x2y)3.2光的速度每秒约为3×105千米,太阳光射到地球上须要的时间约是5×102秒,地球及太阳的间隔约是多少千米?五、课堂小结:1.单项式的乘法法则可分为三点,在解题中要敏捷应用.2.在运算中要留意运算依次.六、板书设计:七、教学后记:1.6整式的乘法(2)教学目的:学问及技能:会进展简洁的整式的乘法运算。过程及方法:经验探究整式的乘法运算法则的过程。情感、看法、价值观:理解整式的乘法运算的算理,体会乘法安排律的作用和转化思想,开展有条理的思索及语言表达实力。教学重点:整式的乘法运算。教学难点:推想整式乘法的运算法则。教学方法:尝试练习法,探讨法,归纳法。教学过程:一、温故:计算:(1)(1)(2)(3)2(ab-3)(4)-3(ab2c+2bc-c)(5)(―2a3b)(―6ab6c)(6)(2xy2)3yx二、知新:课件展示图画,让学生视察图画用不同的形式表示图画的面积.并做比拟.由此得到单项式及多项式的乘法法则。第一表示法:x2-第二表示法:x(x-)故有:x(x-)=x2-视察式子左右两边的特点,找出单项式及多项式的乘法法则。用乘法安排律来验证。单项式及多项式相乘:就是根据安排律用单项式去乘多项式的每一项再,再把所得的积相加。三、稳固:例2:计算(1)2ab(5ab2+3a2b)(2)((3)5m2n(2n+3m-n2) (4)2(x+y2z+xy2z3)·xyz练习:1、推断题:(1)3a3·5a3=15a3()(2)()(3)()(4)-x2(2y2-xy)=-2xy2-x3y()2、计算题:(1)(2)(3)(4)-3x(-y-xyz)四、拓展:1、有一个长方形,它的长为3acm,宽为(7a+2b)cm,则它的面积为多少?五、课堂小结:要擅长在图形变更中发觉规律,能娴熟的对整式加减进展运算。六、作业设计:七、板书设计八、教学后记:1.4整式的乘法(3)教学目的:学问及技能:理解多项式乘法的法则,并会进展多项式乘法的运算。过程及方法:经验探究多项式乘法的法则的过程,理解多项式乘法的法则。情感、看法、价值观:进一步体会乘法安排律的作用和转化的思想,开展有条理的思索和语言表达实力。教学重点:多项式乘法的运算。教学难点:探究多项式乘法的法则,留意多项式乘法的运算中“漏项”、及“符号”的问题教学方法:探究法、探讨法,归纳法。教学过程:一、温故:1、计算:(1)(2)(3)(4)2、计算:(1)(2)二、知新:如图,计算此长方形的面积有几种方法?如何计算?小组探讨你从计算中发觉了什么?多项式及多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。三、稳固:例3计算:(1)(1-x)(0.6-x)(2)(2x+y)(x-y)四、拓展:1、若则m=_____,n=________2、若,则k的值为()(A)a+b(B)-a-b(C)a-b(D)b-a3、已知则a=______b=______4、若成立,则X为5、计算:+26、某零件如图示,求图中阴影局部的面积S五、课堂小结:六、作业设计:七、板书设计:八、教学后记:1.5平方差公式(1)教学目的:学问及技能:会推导平方差公式,并能运用公式进展简洁的计算。过程及方法:经验探究平方差公式的过程,进一步开展学生的符号感和推理实力。情感、看法、价值观:理解平方差公式的几何背景。教学重点:1、弄清平方差公式的来源及其构造特点,能用自己的语言说明公式及其特点;2、会用平方差公式进展运算。教学难点:会用平方差公式进展运算教学方法:探究探讨、归纳总结。教学过程:一、温故:计算:1、2、3、二、知新:1、计算下列各式:(1)(2)(3)2、视察以上算式及其运算结果,你发觉了什么规律?3、猜一猜:-归纳平方差公式:两数和及这两数差的积,等于他们的平方差。三、稳固:1、下列各式中哪些可以运用平方差公式计算(1)(2)(3)(4)2、推断:(1)()(2)()(3)()(4)()(5)()(6)()3、例1利用平方差公式计算:(1)(5+6x)(5-6x)(2)(x-2y)(x+2y)(3)(-m+n)(-m-n)例2利用平方差公式计算:(1)(-1/4x-y)(-1/4x+y)(2)(ab+8)(ab-8)四、拓展:1、求的值,其中2、计算:(1)(2)3、若 五、课堂小结:熟记平方差公式,会用平方差公式进展运算。六、作业设计:七、板书设计:八、教学后记:1.5平方差公式(2)教学目的:学问及技能:进一步使学生理解驾驭平方差公式的敏捷应用。过程及方法:通过小结使学生理解公式数学表达式及文字表达式在应用上的差异.情感、看法、价值观:进步学生学习数学的爱好。教学重点和难点:公式的应用及推广教学过程:一、温故:1.(1)用较简洁的代数式表示下图纸片的面积.(2)沿直线裁一刀,将不规则的右图重新拼接成一个矩形,并用代数式表示出你新拼图形的面积.这样裁开后才能重新拼成一个矩形.推出公式:2.(1)叙述平方差公式的数学表达式及文字表达式;(2)试比拟公式的两种表达式在应用上的差异.按照公式的文字表达式可写出下面两个正确的式子:3.推断正误:(1)(4x+3b)(4x-3b)=4x2-3b2; (×)(2)(4x+3b)(4x-3b)=16x2-9; (×)(3)(4x+3b)(4x-3b)=4x2+9b2; (×)(4)(4x+3b)(4x-3b)=4x2-9b2; (×)二、知新稳固:例3运用平方差公式计算:(1)103×97(2)118×122例4运用平方差公式计算:(1)a2(a+b)(a-b)+a2b2(2)(2x-5)(2x+5)-2x(2x-3)三、拓展:(1)a2-4=(a+2)();(2)25-x2=(5-x)();(3)m2-n2=()();(4)(a+b-3)(a+b+3);(5)(m2+n-7)(m2-n-7).四、课堂小结:五、作业设计:六、板书设计:七、教学后记1.6完全平方公式(1)教学目的:学问及技能:会推导完全平方公式,并能运用公式进展简洁的计算;过程及方法:经验探究完全平方公式的过程,进一步开展学生的符号感和推理实力;情感、看法、价值观:理解完全平方公式的几何背景。教学重点:1、弄清完全平方公式的来源及其构造特点,能用自己的语言说明公式及其特点;2、会用完全平方公式进展运算。教学难点:会用完全平方公式进展运算教学方法:探究探讨、归纳总结。教学过程:一、温故:计算:(1)(mn+a)(mn-a)(2)(3a–2b)(3a+2b)(3)(3a+2b)(3a+2b)(4)(3a–2b)(3a-2b)二、知新:“想一想”:(1)(a+b)2等于什么?你能不能用多项式乘法法则说明理由呢?(2)(a-b)2等于什么?小颖写出了如下的算式:(a—b)2=[a+(—b)]2。她是怎么想的?你能接着做下去吗?由此归纳出完全平方公式:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2教师在此时应当引导视察完全平方公式的特点,并用自己的言语表达出来。例1:利用完全平方公式计算(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2三、稳固:1、下列各式中哪些可以运用完全平方公式计算(1)(2)(3)(4)2、计算下列各式:(1)(2)(3)四、拓展:1、求的值,其中2、若五、课堂小结:熟记完全平方公式,会用完全平方公式进展运算。六、作业设计:七、板书设计:八、教学后记:1.6完全平方公式(2)教学目的:学问及技能:会运用完全平方公式进展一些数的简便运算。过程及方法:经验探究完全平方公式的过程,进一步开展符号感和推理实力。情感、看法、价值观:进步学生综合运用公式进展整式的简便运算。教学重点:运用完全平方公式进展一些数的简便运算。教学难点:敏捷运用平方差和完全平方公式进展整式的简便运算。教学方法:尝试归纳法教学过程:一、温故:计算下列各题:1、2、3、4、二、知新;1、利用完全平方公式计算:(1)1022(2)1972先分析,再课件演示解答过程2、练习:利用完全平方公式计算:(1)982(2)20323、例:计算:(1)(2)(a+b+3)(a+b-3)(3)(x+5)2-(x-2)(x-3)三、稳固:计算:(1)(2)(3)(4)(5)完成“做一做”四、拓展:(1)若,则k=(2)若是完全平方式,则k=五、课堂小结:利用完全平方公式可以进展一些简便的计算,并体会公式中的字母既可以表示单项式,也可以表示多项式。六、作业设计:第27页习题1、2、3.七、板书设计:八、教学后记:1.7整式的除法(1)教学目的:学问及技能:法则的探究及应用。过程及方法:经验探究整式除法运算法则的过程,会进展简洁的整式除法运算。情感、看法、价值观:理解整式除法运算的算理,开展有条理的思索及表达实力。教学重点:可以通过单项式及单项式的乘法来理解单项式的除法,要的确弄清单项式除法的含义,会进展单项式除法运算。教学难点:的确弄清单项式除法的含义,会进展单项式除法运算。教学方法:探究探讨、归纳总结。教学工具:课件教学过程:一、温故:计算2、3、二、知新:(1)(2)(3)提示:可以用类似于分数约分的方法来计算。探讨:通过上面的计算,该如何进展单项式除以单项式的运算?归纳法则结论:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。例题讲解:例1、计算(1)(2)2、月球间隔地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,假如乘坐此飞机飞行这么远的间隔,大约须要多少时间?三、稳固:1、计算:(1)(2)(3)(4)2、计算:(1)(2)四、课堂小结:弄清单项式除法的含义,会进展单项式除法运算。五、作业设计:六、板书设计:七、教学后记:1.7整式的除法(2)教学目的:学问及技能:学会整式的除法,能独立进展简洁的整式除法运算。过程及方法:经验探究整式除法运算法则的过程,会进展简洁的整式除法运算。培育学生独立思索的实力,集体协作的实力,组织归纳的实力及主动探究问题的实力。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点:1、理解多项式除以单项式的运算法则,并能用法则进展计算。2、理解有理数的运算律在整式的加、减、乘、除运算中仍旧适用,能比拟娴熟地进展整式计算。教学难点:敏捷运用整式的除法法则进展有理数运算。教学过程一、温故:计算二、知新:法则的推导.引例:(8x3-12x2+4x)÷4x=(?)利用除法是乘法的逆运算的规定,我们可将上式化为4x·(?)=8x3-12x2+4x.原乘法运算:乘式乘式积(现除法运算):(除式)(待求的商式)(被除式)以上的思想,可以概括为“法则”:法则的语言表达是三、稳固:例2计算:(1)(6ab+8b)÷2b(2)(27a3-15a2+6a)÷3a;四、练习:1.计算:(1)(6xy+5x)÷x; (2)(15x2y-10xy2)÷5xy;(3)(8a2b-4ab2)÷4ab; (4)(4c2d+c3d3)÷(-2c2d).2化简[(2x+y)2-y(y+4x)-8x]÷2x.五、课堂小结:多项式除以单项式的法则(两个要点):(1)多项式的每一项除以单项式;(2)所得的商相加.六、作业设计:七、板书设计:八、教学后记:2.1两条直线的位置关系(1)教学目的:学问及技能:理解对顶角和邻补角的概念,能在图形中分辨.握对顶角相等的性质和它掌的推证过程.会用对顶角的性质进展有关的推理和计算.过程及方法:通过在图形中分辨对顶角和邻补角,培育学生的识图实力.通过对顶角件质的推理过程,培育学生的推理和逻辑思维实力.情感、看法、价值观:从困难图形分解为若干个根本图形的过程中,浸透化难为易的化归思想方法和方程思想.教学重点:理解同一平面内两条直线的位置关系以及对顶角、补角、余角的含义。教学难点:对顶角、补角、余角的性质的探究及应用教学过程一、温故:我们学习过的组成几何图形的线有哪几种?二、知新:1、视察图片,答复同一平面内,两条直线的位置关哪种?(平行及相交)2、∠1及∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.让学生找一找上图中还有没有对顶角,假如有,是哪两个角?(1)分辨对顶角的要领:一看是不是两条直线相交所成的角,对顶角及相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.3、补角和余角的定义假如两角的和是180°,那么这两个角互为补角.假如两角的和是90°,那么这两个角互为余角.∠l和∠2也是直线AB、CD相交得到的,它们不仅有一个公共顶点O,还有一条公共边OA,像这样的两个角叫做邻补角.4.对顶角、余角、补角的性质。对顶角相等。同角或等角的余角相等,同角或等角的补角相等。三、稳固:已知直线a、b相交。∠1=40°,求∠2、∠3、∠4的度数。四、拓展;变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍五、课堂小结:六、作业设计:七、板书设计:八、教学后记:2.1两条直线的位置关系(2)教学目的:学问及技能:在详细情境中进一步丰富对两条直线相互垂直的相识,并会用符号表示两条直线相互垂直.过程及方法:会画垂线,并在操作活动中探究、驾驭垂线的性质.从实际中感知“垂线段最短”,并能运用到生活中解决实际问题.情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点:会运用工具按要求画垂线,驾驭垂线(段)的性质.教学难点:从生活实际中感知“垂线段最短”教学过程:一、说一说,做一做(使学生感受详细情境中的垂直)1.看看四周(教室、书本等)哪些线是相互垂直的?2.请同学们和教师一块折叠长方形的纸(横竖各叠一次)同学们量一量折痕及折痕、折痕及边所成的角的度数.你是怎样理解垂直的?教师根据学生答复画出图形,并规定表示方法.另外,强调直线及线段(射线)垂直就是及线段(射线)所在直线垂直,并画图说明.二、画一画,议一议(使学生再操作活动中探究、体验平面内经过一点有且只有一条直线和已知直线垂直)画一画1.画直线及已知直线垂直;2.过直线外一点画直线及已知直线垂直;3.过直线上一点画直线及已知直线垂直.议一议1.你是用何工具如何画垂线的?2.你画出的垂线有何特点?三、想一想、议一议(使学生从生活中感知“垂线段最短”,并理解点到直线的间隔)1、如何测量跳远成果?2、过马路怎样走最短?3、测量图形中PA、PB、PC、PD的长,比拟哪条线段最短?(其中PA是垂线段)4、你得到什么启发?直线外一点及直线上各点连接的全部线段中,垂线段最短.5、你觉得如何规定点到直线的间隔比拟合理?直线外一点到这条直线的垂线段的长度,叫做点到直线的间隔.四、稳固:1.如图,已知直线AB、CD和AB上一点M,过点M分别画直线AB、CD的垂线.2.如图,污水处理厂A要把处理过的水引入排水沟PQ,应如何铺设排水管道,才能运用料最短,试画出铺设管道路途,并说明理由.3.如图,P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C(2)过点P画OA的垂线,垂足为H比拟PH及PC、PC及CO的长短,并说明理由.4.如图射线OC是∠AOB的角平分线,M是OC上随意一点.(1)画MP⊥OA,垂足为P(2)画MQ⊥OB,垂足为Q(3)度量点M到OA、OB的间隔,你发觉什么?5.如图,已知∠AOB,画射线OC⊥OA,射线OD⊥OB;你能画出几种?视察图形你发觉了什么?1.如图学校要测出一块空地三角形ABC的面积,以便计算绿化本钱,现已测出BC的长为5米,还要测出哪些量才能算出空地的面积?怎样测量?请在图中表示出来2.如图,某长方形木板在运输过程中不慎折断,请在剩余的板材上画始终线,以便截出一块面积最大的长方形木板.五、板书设计:六、教学后记:2.2探究直线平行的条件(1)教学目的:学问及技能:驾驭直线平行的条件,会认由三线八角所成的同位角,并能解决一些问题过程及方法:经验视察、操作、想象、推理、沟通等活动,进一步开展空间观念,推理实力和有条理表达的实力。情感、看法、价值观:从困难图形分解为若干个根本图形的过程中,浸透化难为易的化归思想方法和方程思想.教学重点:会认各种图形下的同位角,并驾驭直线平行的条件是“同位角相等,两直线平行”教学难点:推断两直线平行的说理过程教学方法:理论法教学过程:一、温故:(1)在同一平面内,两条直线的位置关系是(2)在同一平面内,两条直线的是平行线二、知新;1、探究两条直线平行的条件及两直线平行的表示符号。如书中彩图,装修工人正在向墙上钉木条,假如木条b及墙壁边缘垂直,那么木条a及墙壁边缘所夹的角为多少度时才能使木条a及木条b平行?学生动手操作挪动活动木条,完成书中的做一做内容。变更图中∠1的大小,根据上面的方式再做一做,∠1及∠2的大小满意什么关系时,木条a及木条b平行?小组内沟通2、分析图中∠1及∠2的位置关系,归纳同位角的含义及相关结论。如:∠5及∠6、∠7及∠8、∠3及∠4等都是同位角结论:两直线平行的条件——同位角相等,两直线平行。过直线外一点有且只有一条直线及这条直线平行。平行于同一条直线的两条直线平行。三、稳固:例:找出下图中相互平行的直线,并说明理由。四、拓展:五、板书设计:六:教学后记:2.2探究直线平行的条件(2)教学目的:学问及技能:经验探究直线平行的条件的过程,驾驭直线平行的条件,并能解决一些问题。会用三角尺过已知直线外一点画这条直线的平行线。构成及方法:经验视察、操作、想象、推理、沟通等活动,进一步开展空间观念、推理实力和有条理表达的实力。情感、看法、价值观:浸透化难为易的化归思想方法和方程思想.教学重点:弄清内错角和同旁内角的意义,会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。教学难点:会用“内错角相等,两直线平行”和“同旁内角互补,两直线平行”。教学方法:视察探讨、归纳总结。教学过程:一、温故:1、如图,a∥b,数一数图中有几个角(不含平角)2、写出图中的全部同位角。二、知新:小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段AB(如图所示)。他只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,你知道他是怎样做的吗?定义:1、内错角;2、同旁内角。探究练习:视察课件中的三线八角,内错角的变更和同旁内角的变更,探讨:(1)内错角满意什么关系时,两直线平行?为什么?(2)同旁内角满意什么关系时,两直线平行?为什么?★结论:内错角相等,两直线平行。同旁内角互补,两直线平行。三、稳固:1、如右图,∵∠1=∠2∵∠2=∴∥,同位角相等,两直线平行∵∠3+∠4=180°∴AC∥FG,2、如右图,∵DE∥BC∴∠2=,∴∠B+=180°,∵∠B=∠4∴+=180°,两直线平行,同旁内角互补四、课堂小结:五、作业设计:课本P49习题2.4:1、2。六、板书设计:七、教学后记:2.3平行线的性质(1)教学目的:学问及技能:使学生驾驭平行线的三特性质,并能运用它们作简洁的推理,使学生理解平行线的性质和断定的区分.构成及方法:经验视察、操作、想象、推理、沟通等活动,进一步开展空间观念、推理实力和有条理表达的实力。情感、看法、价值观:浸透化难为易的化归思想方法和方程思想.重点难点:1.平行线的三特性质,是本节的重点,也是本章的重点之一.2.怎样区分性质和断定,是教学中的一个难点.教学过程:一、温故:问:我们已经学习过平行线的哪些断定公理和定理?1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.教师指出:把一句本来正确的话,颠倒前后依次,得到新的一句话,不能保证肯定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了.因此,上述新的三句话的正确性,须要进一步证明.二、知新:平行线的性质一:两条平行线被第三条直线所截,同位角相等.简洁说成:两直线平行,同位角相等.已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.求证:∠1=∠2.证明:(反证法)假定∠1≠∠2,则过∠1顶点O作直线A′B′使∠EOB′=∠2.∴A′B′∥CD(同位角相等,两直线平行).故过O点有两条直线AB、A′B′及已知直线CD平行,这及平行公理冲突.即假定是不正确的.∴∠1=∠2.另证:(同一法)过∠1顶点O作直线A′B′使∠E0B′=∠2.∴A′B′∥CD(同位角相等,两直线平行).∵AB∥CD(已知),且O点在AB上,O点在A′B′上,∴A′B′及AB重合(平行公理)∴∠1=∠2.平行线的性质二:两条平线被第三条直线所截,内错角相等.简洁说成:两直线平行,内错角相等.已知:如图2-33,直线AB、CD被EF所截,AB∥CD,求证:∠3=∠2.证明:∵AB∥CD(已知)∴∠1=∠2(两直线平行,同位角相等).∵∠1=∠3(对顶角相等),∴∠3=∠2(等量代换).平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.简洁说成:两直线平行,同旁内角互补.已知:如图2-34,直线AB、CD被EF所截,AB∥CD.求证:∠2+∠4=180°.证法一:∵AB∥CD(已知),∴∠1=∠2(两直线平行,同位角相等),∵∠1+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).证法二:∵AB∥CD(已知),∴∠2=∠3(两直线平行,内错角相等).∵∠3+∠4=180°(邻补角),∴∠2+∠4=180°(等量代换).三、稳固:例:已知某零件形如梯形ABCD,现已残缺,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).解:∠B=180°-∠A=65°,∠C=180°-∠D=80°.(根据平行线的性质三)四、拓展:1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?2.如图,EF过△ABC的一个顶点A,且EF∥BC,假如∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.五、课堂小结:平行线的性质及断定的区分:从因果关系上看:性质:因为两条直线平行,所以……;断定:因为……,所以两条直线平行.从所起作用上看:性质:根据两条直线平行,去证两角相等或互补:断定:根据两角相等或互补,去证两条直线平行.六、作业设计:七、板书设计:八、教学后记:2.4用尺规作角教学目的:学问及技能:会用尺规作一个角等于已知角;并理解它们在尺规作图中的简洁应用。过程及方法:经验尺规作角的过程,进一步培育学生的动手操作实力,增加学生的数学应用和探讨意识。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点:会用尺规作一个角等于已知角。教学难点:用尺规作角的和、差,倍及作角的综合应用。教学方法:猜测、理论法、讲授法、探讨、总结。打算活动:圆规、直尺教学过程:一、温故:提出问题:如何用尺规作一条线段等于已知线段?在此根底上,提出:假如只有圆规和直尺这两个工具,你能按要求作出图形吗?二、知新:如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB。(1)请过点C画出及AB平行的另一条边(2)假如你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹哦!)(一)用尺规作一个角等于已知角.已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB(二)用尺规作一个角等于已知角的倍数:已知:∠1求作:∠MON,使∠MON=2∠1(三)用尺规作一个角等于已知角的和:已知:∠1、∠2、∠3求作:①∠AOB,使∠AOB=∠1+∠2②∠POQ,使∠POQ=∠1+∠2+∠3(四)用尺规作一个角等于已知角的差:已知:∠、∠、∠求作:①∠AOB,使∠AOB=∠-∠②∠POQ,使∠POQ=∠-∠-∠③求作一个角,使它等于2∠-∠三、稳固拓展:1、已知:线段AB、∠、∠求作:(1)分别过点A、点B作∠CAB=∠、∠CBA=∠(2)如图,点P为∠ABC的边AB上的一点,过点P作直线EF//BC四、课堂小结:五、作业设计:六、板书设计:七、教学后记:3.1相识三角形(1)教学目的:学问及技能:能证明出“三角形内角和等于180°”,能发觉“直角三角形的两个锐角互余”;按角将三角形分成三类。过程及方法:通过视察、想象、推理、沟通等活动,开展空间观念、推理实力和有条理地表达实力。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重难点:三角形内角和定理推理和应用。教学方法:演示、试验法,尝试练习法。教学工具:一副三角板和三个剪好的三角形,课件。教学过程:一、温故:1、填空:(1)当0°<<90°时,是角;(2)当=°时,是直角;(3)当90°<<180°时,是角;(4)当=°时,是平角。2、如右图,∵AB∥CE,(已知)∴∠A=,()∴∠B=,()二、知新:(一)根据自己手中的一副特别的三角板,知道三角形的三个内角和等于180°,那么是否对其他的三角形也有这样的一个结论呢?(提出问题,激发学生的爱好)让学生用自己剪好的一个三角形,把三个角撕下来,拼在一块。你发觉了什么?小组沟通。结论:三角形三个内角和等于180°(几何表示)练习一:1、推断:(1)一个三角形的三个内角可以都小于60°;()(2)一个三角形最多只能有一个内角是钝角或直角;()2、在△ABC中,(1)∠C=70°,∠A=50°,则∠B=度;(2)∠B=100°,∠A=∠C,则∠C=度;(3)2∠A=∠B+∠C,则∠A=度。3、在△ABC中,∠A=°∠=°∠=°求三个内角的度数。(二)猜一猜一个三角形中三个内角可以是什么角?(提示:一个三角形中能否有两个直角?钝角呢?)小组探讨。锐角三角形锐角三角形三个内角都是锐角直角三角形有一个内角是直角钝角三角形有一个内角是钝角练习二:1、视察三角形,并把它们的标号填入相应的括号内:锐角三角形()直角三角形(Rt△)钝角三角形()2、一个三角形两个内角的度数分别如下,这个三角形是什么三角形?(1)30°和60°()(2)40°和70°()(3)50°和30°()(4)45°和45°()思索:直角三角形中的两个锐角有什么关系?结论:直角三角形的两个锐角互余练习三:1、(图1)(图2)(1)图1中的直角三角形用符号写成,直角边是和,斜边是;(2)图2中的直角三角形用符号写成,直角边是和,斜边是;2、如下图,在Rt△CDE,∠C和∠E的关系是,其中∠C=55°,则∠E=度3、如上图,在Rt△ABC中,∠A=2∠B,则∠A=度,∠B=度;三、课堂小结:1、三角形的三个内角的和等于180°;2、三角形按角分为三类: (1)锐角三角形(2)直角三角形(3)钝角三角形3、直角三角形的两个锐角互余四、作业设计:五、板书设计:六、教学后记:3.1相识三角形(2)教学目的:学问及技能:通过视察、操作、想象、推理、沟通等活动,发掌空间,推理实力和有条理地表达实力。过程及方法:结合详细实例,进一步相识三角形的概念及其根本要素,驾驭三角形三边关系:“三角形随意两边之和大于第三边;三角形随意两边之差小于第三边”。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点:三角形三边关系:“三角形随意两边之和大于第三边;三角形随意两边之差小于第三边”。教学难点:敏捷运用三角形三边关系解决一些实际问题。教学方法:探究、归纳总结。教学工具:课件打算活动:教学过程:一、温故:1、能从右图中找出4个不同的三角形吗?2、这些三角形有什么共同的特点?二、知新:1、你能用符号表示上面的三角形吗?2、它的三个顶点分别是三条边分别是三个内角分别是3、分别量出这三角形三边的长度,并计算随意两边之和以及随意两边之差。你发觉了什么?结论:三角形随意两边之和大于第三边,三角形随意两边之差小于第三边三、稳固:例:有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒及它们能摆成三角形吗?为什么?长度为13cm的木棒呢?长度为7cm的木棒呢?四、拓展:1、下列每组数分别是三根小木棒的长度,用它们能摆成三角形吗?为什么?(单位:cm)(1)1,3,5(2)3,4,7(3)5,9,13(4)11,12,222、已知一个三角形的两边长分别是3cm和4cm,则第三边长X的取值范围是。若X是奇数,则X的值是。这样的三角形有个若X是偶数,则X的值是。这样的三角形又有个3、一个等腰三角形的一边是2cm,另一边是9cm,则这个三角形的周长是cm4、一个等腰三角形的一边是5cm,另一边是7cm,则这个三角形的周长是cm五、课堂小结:驾驭三角形三边关系:“三角形随意两边之和大于第三边;三角形随意两边之差小于第三边”。六、作业设计:七、板书设计:八、教学后记:3.1相识三角形(3)教学目的:学问及技能:理解三角形的重心及内心的含义,驾驭它们的特点并敏捷地运用这些特点分析问题解决问题过程及方法:通过理论、视察、沟通等活动,开展空间观念、推理实力和有条理地表达实力;情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点:三角形的重心及内心的含义及特点的理解。教学难点:三角形的重心及内心的含义及特点的敏捷运用。教学方法:演示、试验法,尝试练习法。教学工具:三个剪好的三角形,课件。教学过程:温故:知新:活动一随意画一个三角形,设法画出它的一个内角的平分线。你能通过折纸的方法得到它吗?学生可以用量角器来量出这个角的大小的方法画出这个角的平分线。也可以用折纸的方法得到角平分线。三角形一个角的角平分线和这个角的对边相交,这个角的顶点和对边交点之间的线段叫做三角形中这个角的角平分线。简称三角形的角平分线。教师应当标准学生的书面表达,给出下面的示范书写:结论:一个三角形共有三条角平分线,它们都在三角形内部,而且相交于一点。活动二:1、随意画一个三角形,设法画出它的三条中线,它们有怎样的位置关系?小组沟通。2、你能通过折纸的方法得到它吗?连结三角形一个顶点和它对边中点的线段,叫做三角形这个边上的中线。简称三角形的中线。结论:一个三角形共有三条中线,它们都在三角形内部,而且相交于一点。1、AD是△ABC的角平分线(D在BC所在直线上),那么∠BAD=_______=______.△ABC的中线(E在BC所在直线上),那么BE=___________=_____BC.2、如图,在△ABC中,∠BAC=60°,∠B=45°,AD是△ABC的一条角平分线求∠ADB的度数.3.1相识三角形(4)教学目的:学问及技能:理解三角形的垂心的含义,驾驭它的特点并敏捷地运用这些特点分析问题解决问题过程及方法:通过理论、视察、沟通等活动,开展空间观念、推理实力和有条理地表达实力;情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点:三角形的垂心的含义及特点的理解。教学难点:三角形的垂心的含义及特点的敏捷运用。教学方法:演示、试验法,尝试练习法。教学工具:三个剪好的三角形,课件。教学过程:一、温故:二、知新:1、★三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高。如图,线段AM是BC边上的高。∵AM是BC边上的高∴AM⊥BC做一做:每人打算一个锐角三角形纸片(1)你能画出这个三角形的高吗?你能用折纸的方法得到它吗?(2)这三条高之间有怎样的位置关系呢?结论:锐角三角形的三条高在三角形的内部且交于一点。3、议一议:每人画出一个直角三角形和一个钝角三角形(1)画出直角三角形的三条高,并视察它们有怎样的位置关系?(2)你能折出钝角三角形的三条高吗?你能画出它们吗?(3)钝角三角形的三条高交于一点吗?它们所在的直线交于一点吗?结论:1、直角三角形的三条高交于直角顶点处。2、钝角三角形的三条高所在直线交于一点,此点在三角形的外部。三、稳固:如图,(1)共有个直角三角形(2)高AD、BE、CF相对应的底分别是、。(3)AD=3、BC=6、AB=5、BE=4,则S△ABC=、CF=、AC=。四、课堂小结:(1)锐角三角形的三条高在三角形的内部且交于一点。(2)直角三角形的三条高交于直角顶点处。(3)钝角三角形的三条高所在直线交于一点,此点在三角形的外部。3.2图形的全等教学目的:学问及技能:理解图形全等的意义,理解全等图形的特征。驾驭全等三角形对应边相等、对应角相等的性质,并能进展简洁的推理计算。过程及方法:借助详细情境和图案,经验视察、发觉和理论操作重叠图形等过程。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维,培育学生学习的主动性。教学重点难点:驾驭全等图形的特征,会识别全等图形,会看图,会找全等三角形的对应边、对应角。会用全等三角形的性质去解决问题。教学方法:理论操作法、视察法、探究探讨、归纳总结。教学过程:一、温故:二、知新:1、“看一看”引导学生视察课本两组图形。形态一样且大小也一样的两个图形可以重合。形态不同或大小不同的两个图形不能重合,不能重合的两个图形大小肯定不一样。结论:可以完全重合的两个图形称为全等图形。全等图形的形态和大小都一样(课件展示)从而引出全等三角形的定义及性质2、全等三角形的定义及有关概念和性质.(1)定义:全等三角形是可以完全重合的两个三角形或形态大小都一样的两个三角形.(2)对应元素及性质:教师结合手中的教具说明对应元素(顶点、边、角)的含义,并引导学生视察全等三角形中对应元素的关系,发觉对应边相等,对应角相等.教师启发学生根据“重合”来说明道理.3.学习全等三角形的符号表示及读法和写法.说明“≌”的含义和读法,并强调对应顶点写在对应位置上.三、稳固:(1)全等用符号_________表示.读作__________.(2)三角形ABC全等于三角形DEF,用式子表示为______________(3)已知△ABC和△A′B′C′中,∠A=∠A′,∠B=∠B′∠C=∠C′;AB=A′B′,BC=B′C′,AC=A′C′.则△ABC_______△A′B′C′.(4)如右图△ABC≌△BCD,∠A的对应角是∠D,∠B的对应角∠E,则∠C及____是对应角;AB及_____是对应边,BC及_____是对应边,AC及____是对应边.(5)推断题:①全等三角形的对应边相等,对应角相等.()②全等三角形的周长相等.()③面积相等的三角形是全等三角形.()④全等三角形的面积相等.()四、拓展:例1已知:△ABC≌△DFE,∠A=96°,∠B=25°,DF=10cm.求∠E的度数及AB的长.如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD∠C=20°,AB=10,AD=4,G为AB延长线上一点.求∠EBG的度数和CE的长.分析:(1)图中可分解出四组根本图形:有公共角的Rt△ACD和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.(2)利用全等三角形的对应角相等性质及外角或邻补角的学问,求得∠EBG等于160°.(3)利用全等三角形对应边相等的性质及等量减等量差相等的关系可得:CE=CA-AE=BA-AD=6.五、课堂小结:六、作业设计:七、板书设计:八、教学后记:3.3探究三角形全等的条件(1)教学目的:学问及技能:驾驭全等三角形的“边边边”条件,理解三角形的稳定性。过程及方法:经验探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维培育学生学习的主动性。教学重点:三角形“边边边”的全等条件教学难点:用全等三角形“边边边”的条件进展有条理的思索并进展简洁的推理。教学方法:探究、归纳总结。教学过程:一、温故:1、全等三角形的相等,相等。2、如图1,已知△AOC≌△BOD,则∠A=∠B,∠C=,=∠2对应边有AC=,=OB,=OD。3、如图2,已知△AOC≌△DOB,则∠A=∠D,∠C=,=∠2对应边有AC=,OC=,AO=。4、如图3,已知∠B=∠D,∠1=∠2,∠3=∠4,AB=CD,AD=CB,AC=CA。则△≌△5、断定两个三角形全等,依定义必需满意()(A)三边对应相等(B)三角对应相等(C)三边对应相等和三角对应相等(D)不能确定二、知新:试验操作:1、画出一个三角形,使它的三个内角分别为40°,60°,80°,把你画的三角形及小组内画的进展比拟,它们肯定全等吗?结论:三个内角分别相等的两个三角形不肯定全等。2、画出一个三角形,使它的三边长分别为4cm、5cm、7cm,把你画的三角形及小组内画的进展比拟,它们肯定全等吗?结论:三边分别相等的两个三角形全等,简写为“边边边”或“SSS”。留意:三角形具有稳定性。三、稳固:1、下列三角形全等的是2、三边对应相等的两个三角形例全等,简写为或3、已知:如图AB=AC,BD=DC求证:△ABD≌△ACD4、已知:如图AD=CB,AB=CD求证:∠B=∠D四、拓展:1、如图,AB=DC,BF=CE,AE=DF,你能找到一对全等的三角形吗?说明你的理由。2、如图,A、C、F、D在同始终线上,AF=DC,AB=DE,BC=EF你能找到哪两个三角形全等?说明你的理由。3、如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对,并说明全等的理由。五、课堂小结:六、作业设计:七、板书设计:八、教学后记:3.3探究三角形全等的条件(2)教学目的:学问及技能:驾驭全等三角形的“角边角”“角角边”条件,理解三角形的稳定性。过程及方法:经验探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维培育学生学习的主动性。教学重点:三角形“角边角”“角角边”的全等条件教学难点:用三角形“角边角”“角角边”的全等条件进展有条理的思索及进展简洁的推理。教学方法:探究、归纳总结。教学过程:一、温故:1、三边对应相等的两个三角形全等,简写为或2、如图1,在△ABC中,AB=AC,AD是BC边上的中线,AD能平分∠BAC吗?你能说明理由吗?二、知新:探究练习:1、假如“两角及一边”条件中的边是两角所夹的边,比方三角形的两个内角分别是60°和80°,它们所夹的边为2cm,你能画出这个三角形吗?你画的三角形及同伴画的肯定全等吗?结论:两角及其夹边分别相等的两个三角形全等,简写为“角边角”或“ASA”.2、假如“两角及一边”条件中的边是其中一角的对边,比方三角形两个内角分别是60°和45°,一条边长为3cm。你画的三角形及同伴画的肯定全等吗?结论:两角分别相等且其中一组等角的对边相等的两个三角形全等,简写为“角角边”或“AAS”.三、稳固:1、两角和它们的夹边对应相等的两个三角形全等,简写成或。2、两角和其中一角的对边对应相等的两个三角形全等,简写成或。3、如图,AB=AC,∠B=∠C,你能证明△ABD≌△ACE吗?4、如图,已知AC及BD交于点O,AD∥BC,且AD=BC,你能说明BO=DO吗?四、拓展:1、如图,AB∥CD,∠A=∠D,BF=CE,∠AEB=110°,求∠DCF的度数。2、如图,在Rt△ACB中,∠C=90°,BE是角平分线,ED⊥AB于D,且BD=AD,试确定∠A的度数。五、课堂小结:驾驭三角形的“角边角”“角角边”的全等条件,可以进展有条理的思索并进展简洁的推理。六、作业设计:七、板书设计:八、教学后记:3.3探究三角形全等的条件(3)教学目的:学问及技能:驾驭全等三角形的“边角边”条件。过程及方法:经验探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维培育学生学习的主动性。教学重点:三角形“边角边”的全等条件教学难点:用三角形“边角边”的全等条件进展有条理的思索及进展简洁的推理。教学方法:探究、归纳总结。教学过程:一、温故:复习提问1、怎样的两个三角形是全等三角形?全等三角形的性质?2、我们学习的判别三角形全等的条件有哪些?二、知新:探究练习:1、假如“两边及一角”条件中的角是两边所夹的角,比方三角形的两条边分别是2.5cm和3.5cm,它们所夹的角为40°,你能画出这个三角形吗?你画的三角形及同伴画的肯定全等吗?结论:两边及其夹角对应相等的两个三角形全等,简称“边角边”或“SAS”2、思索“议一议”三、稳固:1.填空:(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,须要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是()=();还须要一个条件()=()(这个条件可以证眀吗?(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,须要满意的三个条件中,已具有两个条件:()=(),()=()(这个条件可以证得吗?).四、拓展:1已知:AD∥BC,AD=CB(图3).求证:△ADC≌△CBA.2已知:AB=AC、AD=AE、∠1=∠2(图4).求证:△ABD≌△ACE.五、课堂小结:六、作业设计:七、板书设计:八、教学后记:13.4用尺规作三角形教学目的:学问及技能:在分别给出的两角夹边、两边夹角和三边的条件下,可以利用尺规作三角形。过程及方法:能结合三角形全等的条件及同伴沟通作图过程和结果的合理性。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维培育学生学习的主动性。教学重点:能根据题目的条件用尺规作三角形。教学难点:探究作图过程。教学方法:示范、探究、探讨。教学工具:圆规、直尺教学过程:一、温故:回忆用尺规作线段和角的方法。1、已知:线段a,求作:线段AB,使得AB=a。2、已知:∠求作:∠AOB,使∠AOB=∠二、知新稳固:1、已知三角形的两边及其夹角,求作这个三角形.已知:线段a,c,∠α。求作:ΔABC,使得BC=a,AB=c,∠ABC=∠α。 作法及过程:(1)作一条线段BC=a,(2)以B为顶点,BC为一边,作角∠DBC=∠a;(3)在射线BD上截取线段BA=c;(4)连接AC,ΔABC就是所求作的三角形。2、已知三角形的两角及其夹边,求作这个三角形.已知:线段∠α,∠β,线段c。求作:ΔABC,使得∠A=∠α,∠B=∠β,AB=c。 3、已知三角形的三边,求作这个三角形.已知:线段a,b,c。求作:ΔABC,使得AB=c,AC=b,BC=a。 三、课堂小结:四、作业设计:五、板书设计:六、教学后记:3.5利用三角形全等测间隔教学目的:学问及技能:能利用三角形的全等解决实际问题。过程及方法:体会数学及实际生活的联络;情感、看法、价值观:能在解决问题的过程中进展有条理的思索和表达。教学重点:能利用三角形的全等解决实际问题。教学难点:能在解决问题的过程中进展有条理的思索和表达。教学方法:探究、归纳总结。教学过程:一、温故:1、三边对应相等的两个三角形全等,简写为或2、两角和它们的夹边对应相等的两个三角形全等,简写成或3、两角和其中一角的对边对应相等的两个三角形全等,简写成或4、两边和它们的夹角对应相等的两个三角形全等,简写成或5、全等三角形的性质:两三角形全等,对应边,对应角6、如图;△ADC≌△CBA,那么,7、如图;△ABD≌△ACE,那么,二、知新:探究练习:如图:A、B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的间隔,但绳子不够长。他叔叔帮他出了一个这样的办法:先在地上取一个可以干脆到达A点和B点的点C,连接AC并延长到E,使CD=AC;连接BC并延长到E,使CE=CB;连接DE并测量出它的长度;DE=AB吗?请说明理由(2)假如DE的长度是8m,则AB的长度是多少?三、稳固:如图,山脚下有A、B两点,要测出A、B两点的间隔。(1)在地上取一个可以干脆到达A、B点的点O,连接AO并延长到C,使AO=CO,你能完成下面的图形?(2)说明你是如何求AB的间隔。2.如图,要量河两岸相对两点A、B的间隔,可以在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DF,使A、C、E在一条直线上,这时测得DE的长就是AB的长,试说明理由。四、拓展:1.在一座楼相邻两面墙的外部有两点A、C,如图所示,请设计方案测量A、C两点间的间隔。2.如图,一池塘的边缘有A、B两点,试设计两种方案测量A、B两点间的间隔。五、课堂小结:能利用三角形的全等解决实际问题,能在解决问题的过程中进展有条理的思索和表达。六、作业设计:七、板书设计:八、教学后记:4.1用表格表示的变量间关系教学目的:学问及技能:理解变量、自变量和因变量的意义,理解可以用列表格表示两个变量之间的关系。过程及方法:通过分析小车在斜坡上下滑时高度刚好间数据之间的联络使学生体会小车下滑时间随着高度变更而变更。情感、看法、价值观:通过学生解决问题的过程,激发学生的创新思维培育学生学习的主动性。教学重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变更状况。教学难点:对表格所表达的两个变量关系的理解。教学方法:多媒体协助教学教学过程:一、温故:教师指明:在日常生活中,我们常常会见到一个量随另一个量的变更而变更的问题。如:我们的身高随年龄的变更而变更、汽车行驶的路程随时间的变更而变更等等。今日我们就来学习如何用表格表示变量间的关系。二、知新:1.投影图表,学生视察思索,逐一答复下面的问题:支撑物高度10203040506070小车下滑时间4.233.002.452.131.891.711.59(1)当支撑物高度为70厘米时,小车下滑时间是多少?(1.59)(2)假如用表h示支撑物高度,t表示小车下滑时间,随着h渐渐变大,t是如何变更的(越来越小)(3)h增加10厘米时,t的变更状况一样吗?(不一样)(4)估计当h=90时,t的值是多少。你是怎样估计的?(5)随着支撑物高度h的表变更,还有哪些量发生变更?哪些量始终不发生变更?2、“议一议”我国从1949年到1999年的人口统计数据如下(准确到0.01亿):(1)假如用x表示时间,y表示我国人口总数,那么随着x的变更,y的变更趋势是什么

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论