下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
本文格式为Word版,下载可任意编辑——高中数学必背知识点(总结)是在某一特定时间段对学习和工作生活或其完成处境,包括取得的劳绩、存在的问题及得到的(阅历)和教训加以回想和分析的书面材料,它可以提升我们察觉问题的才能,快快来写一份总结吧。下面是我给大家带来的高中数学必背学识点,以供大家参考!
高中数学必背学识点
其次片面函数与导数
1.映射:留神①第一个集合中的元素务必有象;②一对一,或多对一。
2.函数值域的求法:①分析法;②配(方法);③判别式法;④利用函数单调性;
⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、十足值的意义等);⑧利用函数有界性(、、等);⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,那么复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数分解为根本函数:内函数与外函数;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性那么增,异性那么减”来判断原函数在其定义域内的单调性。
留神:外函数的定义域是内函数的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,那么;
⑸在关于原点对称的单调区间内:奇函数有一致的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为繁杂,应先等价变形,再判断其奇偶性;
高二上册数学必修一学识点总结
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,那么将较小的数和余数构成新的一对数,持续上面的除法,直到大数被小数除尽,那么这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其根本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数对比,并以大数减小数,持续这个操作,直到所得的数相等为止,那么这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算便当而商定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规矩计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
(高二数学)学识点整理
根本概念
公理1:假设一条直线上的两点在一个平面内,那么这条直线上的全体的点都在这个平面内。
公理2:假设两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1:经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4:平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025民用航空运输行业市场预测与技术演进
- 中班艺术亲子活动策划方案三篇
- 资信评估合同
- 酒店客房合同书
- 国内工业研发设计软件市场现状
- 粉刷承包合同
- 部编版七年级道德与法治上册《1.1.2少年有梦》听课评课记录
- 个人黑色奔驰出租合同
- 厨房设备购销合同书
- 农业种植项目投资合同
- 2024年新华文轩出版传媒股份有限公司招聘笔试参考题库含答案解析
- 课件:曝光三要素
- 春节文化研究手册
- 小学综合实践《我们的传统节日》说课稿
- 《铝及铝合金产品残余应力评价方法》
- IATF-16949:2016质量管理体系培训讲义
- 记账凭证封面直接打印模板
- 人教版八年级美术下册全册完整课件
- 北京房地产典当合同
- 档案工作管理情况自查表
- 毕业论文-基于51单片机的智能LED照明灯的设计
评论
0/150
提交评论