陕西省长安市第一中学2023学年高考适应性考试数学试卷(含答案解析)_第1页
陕西省长安市第一中学2023学年高考适应性考试数学试卷(含答案解析)_第2页
陕西省长安市第一中学2023学年高考适应性考试数学试卷(含答案解析)_第3页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列满足,公差,且成等比数列,则A.1 B.2 C.3 D.42.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.3.已知数列满足:)若正整数使得成立,则()A.16 B.17 C.18 D.194.如图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.则下列结论中表述不正确的是()A.从2000年至2016年,该地区环境基础设施投资额逐年增加;B.2011年该地区环境基础设施的投资额比2000年至2004年的投资总额还多;C.2012年该地区基础设施的投资额比2004年的投资额翻了两番;D.为了预测该地区2019年的环境基础设施投资额,根据2010年至2016年的数据(时间变量t的值依次为)建立了投资额y与时间变量t的线性回归模型,根据该模型预测该地区2019的环境基础设施投资额为256.5亿元.5.已知命题:使成立.则为()A.均成立 B.均成立C.使成立 D.使成立6.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元7.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.12808.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.9.两圆和相外切,且,则的最大值为()A. B.9 C. D.110.某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有()种.A.360 B.240 C.150 D.12011.已知边长为4的菱形,,为的中点,为平面内一点,若,则()A.16 B.14 C.12 D.812.若与互为共轭复数,则()A.0 B.3 C.-1 D.4二、填空题:本题共4小题,每小题5分,共20分。13.若复数z满足,其中i是虚数单位,则z的模是______.14.设复数满足,则_________.15.已知x,y>0,且,则x+y的最小值为_____.16.已知函数图象上一点处的切线方程为,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:123456758810141517(1)经过进一步统计分析,发现与具有线性相关关系.请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为,获得“二等奖”的概率为.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额的分布列及数学期望.参考公式:,,,.18.(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,,求的值.19.(12分)已知函数.(1)讨论函数的极值;(2)记关于的方程的两根分别为,求证:.20.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21.(12分)如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形,在上,且面.(1)求证:是的中点;(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.22.(10分)设函数.(1)求的值;(2)若,求函数的单调递减区间.

2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【答案解析】

先用公差表示出,结合等比数列求出.【题目详解】,因为成等比数列,所以,解得.【答案点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.2.A【答案解析】

对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【题目详解】因为为纯虚数,所以,得所以.故选A项【答案点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.3.B【答案解析】

计算,故,解得答案.【题目详解】当时,,即,且.故,,故.故选:.【答案点睛】本题考查了数列的相关计算,意在考查学生的计算能力和对于数列公式方法的综合应用.4.D【答案解析】

根据图像所给的数据,对四个选项逐一进行分析排除,由此得到表述不正确的选项.【题目详解】对于选项,由图像可知,投资额逐年增加是正确的.对于选项,投资总额为亿元,小于年的亿元,故描述正确.年的投资额为亿,翻两翻得到,故描述正确.对于选项,令代入回归直线方程得亿元,故选项描述不正确.所以本题选D.【答案点睛】本小题主要考查图表分析能力,考查利用回归直线方程进行预测的方法,属于基础题.5.A【答案解析】试题分析:原命题为特称命题,故其否定为全称命题,即.考点:全称命题.6.D【答案解析】

设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【题目详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【答案点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.7.A【答案解析】

根据二项式展开式的公式得到具体为:化简求值即可.【题目详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【答案点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.8.C【答案解析】

根据直线与圆相交,可求出k的取值范围,根据几何概型可求出相交的概率.【题目详解】因为圆心,半径,直线与圆相交,所以,解得所以相交的概率,故选C.【答案点睛】本题主要考查了直线与圆的位置关系,几何概型,属于中档题.9.A【答案解析】

由两圆相外切,得出,结合二次函数的性质,即可得出答案.【题目详解】因为两圆和相外切所以,即当时,取最大值故选:A【答案点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.10.C【答案解析】

可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师,分别计算后相加即可.【题目详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有.∴共有结对方式60+90=150种.故选:C.【答案点睛】本题考查排列组合的综合应用.解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数.本题中有一个平均分组问题.计数时容易出错.两组中每组中人数都是2,因此方法数为.11.B【答案解析】

取中点,可确定;根据平面向量线性运算和数量积的运算法则可求得,利用可求得结果.【题目详解】取中点,连接,,,即.,,,则.故选:.【答案点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.12.C【答案解析】

计算,由共轭复数的概念解得即可.【题目详解】,又由共轭复数概念得:,.故选:C【答案点睛】本题主要考查了复数的运算,共轭复数的概念.二、填空题:本题共4小题,每小题5分,共20分。13.【答案解析】

先求得复数,再由复数模的计算公式即得.【题目详解】,,则.故答案为:【答案点睛】本题考查复数的四则运算和求复数的模,是基础题.14..【答案解析】

利用复数的运算法则首先可得出,再根据共轭复数的概念可得结果.【题目详解】∵复数满足,∴,∴,故而可得,故答案为.【答案点睛】本题考查了复数的运算法则,共轭复数的概念,属于基础题.15.1【答案解析】

处理变形x+y=x()+y结合均值不等式求解最值.【题目详解】x,y>0,且,则x+y=x()+y1,当且仅当时取等号,此时x=4,y=2,取得最小值1.故答案为:1【答案点睛】此题考查利用均值不等式求解最值,关键在于熟练掌握均值不等式的适用条件,注意考虑等号成立的条件.16.1【答案解析】

求出导函数,由切线方程得切线斜率和切点坐标,从而可求得.【题目详解】由题意,∵函数图象在点处的切线方程为,∴,解得,∴.故答案为:1.【答案点睛】本题考查导数的几何意义,求出导函数是解题基础,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1);(2)见解析【答案解析】试题分析:(I)由题意可得,,则,,关于的线性回归方程为.(II)由题意可知二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,.据此可得分布列,计算相应的数学期望为元.试题解析:(I)依题意:,,,,,,则关于的线性回归方程为.(II)二人所获购物券总金额的可能取值有、、、、元,它们所对应的概率分别为:,,,,.所以,总金额的分布列如下表:03006009001200总金额的数学期望为元.18.(1);(2)20【答案解析】

(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【题目详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,,从而,则.【答案点睛】本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.19.(1)见解析;(2)见解析【答案解析】

(1)对函数求导,对参数讨论,得函数单调区间,进而求出极值;(2)是方程的两根,代入方程,化简换元,构造新函数利用函数单调性求最值可解.【题目详解】(1)依题意,;若,则,则函数在上单调递增,此时函数既无极大值,也无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;若,则,令,解得,故当时,,单调递增;当时,,单调递减,此时函数有极大值,无极小值;(2)依题意,,则,,故,;要证:,即证,即证:,即证,设,只需证:,设,则,故在上单调递增,故,即,故.【答案点睛】本题考查函数极值及利用导数证明二元不等式.证明二元不等式常用方法是转化为证明一元不等式,再转化为函数最值问题.利用导数证明不等式的基本方法:(1)若与的最值易求出,可直接转化为证明;(2)若与的最值不易求出,可构造函数,然后根据函数的单调性或最值,证明.20.(1);(2)【答案解析】

(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【题目详解】(1)若,则,依题意,故;(2)因为,故;若,即时,,符合题意;若,即时,,解得;综上所述,实数的取值范围为.【答案点睛】本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.21.(1)见解析;(2).【答案解析】试题分析:(1)连交于可得是中点,再根据面可得进而根据中位线定理可得结果;(2)取中点,由(1)知两两垂直.以为原点,所在直线分别为轴,轴,轴建立空间直角坐标系,求出面的一个法向量,用表示面的一个法向量,由可得结果.试题解析:(1)证明:连交于,连是矩形,是中点.又面,且是面与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论