2022-2023学年人教版初中数学专题《反比例函数与实际问题》含答案解析_第1页
2022-2023学年人教版初中数学专题《反比例函数与实际问题》含答案解析_第2页
2022-2023学年人教版初中数学专题《反比例函数与实际问题》含答案解析_第3页
2022-2023学年人教版初中数学专题《反比例函数与实际问题》含答案解析_第4页
2022-2023学年人教版初中数学专题《反比例函数与实际问题》含答案解析_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题反比例函数优选提升题三:实际问题与反比例函数一、单选题1.(2022·甘肃·甘州中学九年级期末)如图,△ABC是边长为4cm的等边三角形,动点P从点A出发,以2cm/s的速度沿A→C→B运动,到达B点即停止运动,过点P作PD⊥AB于点D,设运动时间为x(s),△ADP的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是()A. B. C. D.【答案】B【详解】过点P作PD⊥AB于点D,△ABC是边长为4cm的等边三角形,则AP=2x,当点P从A→C的过程中,AD=x,PD=x,如图1所示,则y=AD•PD==,(0≤x≤2),当点P从C→B的过程中,BD=(8﹣2x)×=4﹣x,PD=(4﹣x),PC=2x﹣4,如图2所示,则△ABC边上的高是:AC•sin60°=4×=2,∴y=S△ABC﹣S△ACP﹣S△BDP=(2<x≤4),故选B.点睛:此题空考查了动点问题函数图象.几何图形中的动点问题,是代数的方程知识与几何知识的综合运用.解题的关键是要求有运动的观点,搞清点的运动特性,对动态问题作静态分析,解答时要注意以下几点:(1)将与求解有关的线段用含未知数的代数式表示出来;(2)明确几何题与代数题不是截然分开的,解题时要有数形结合的思想;(3)考虑到方程的解应符合实际意义,所以在求出方程的解后,要结合条件进行合理的取舍.对于动点类的题目,解题的关键在于抓住运动图形的特殊位置,临界位置及其特殊性质,解决此类问题的基本方法是从运动与变化的角度来观察和研究图形,把握图形运动与变化的全过程,此类题目常需借助函数或方程解答.二、解答题2.(2022·河北·保定市清苑区北王力中学九年级期末)1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米()的反比例函数,其图象如下图所示所示.请根据图象中的信息解决下列问题:(1)求y与x之间的函数表达式;(2)当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为多少米?(3)若某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是多少厘米?【答案】(1)y=;(2)半径为28米;(3)最多是0.4厘米.【分析】(1)设y与x之间的函数表达式为,解方程即可得到结论;(2)把x=0.5代入反比例函数的解析式即可得到结论;(3)根据题意列不等式即可得到结论.(1)设y与x之间的函数表达式为,∴7=,∴k=14,∴y与x之间的函数表达式为y=;(2)当x=0.5时,y==28米,∴当某人两腿迈出的步长之差为0.5厘米时,他蒙上眼睛走出的大圆圈的半径为28米;(3)当y≥35时,即≥35,∴x≤0.4,∴某人蒙上眼睛走出的大圆圈的半径不小于35米,则其两腿迈出的步长之差最多是0.4厘米.【点睛】本题考查了反比例函数的应用,正确的理解题意是解题的关键.3.(2022·安徽六安·九年级期末)东东在网上销售一种成本为30元/件的T恤衫.销售过程中的其他各种费用(不再含T恤衫成本)总计50(百元).若销售价格为x(元/件).销售量为y(百件).当时,y与x之间满足一次函数关系.且当时,,有关销售量y(百件)与销售价格x(元/件)的相关信息如下:销售量y(百件)_____________销售价格x(元/件)(1)求当时.y与x的函数关系式:(2)①求销售这种T恤衫的纯利润w(百元)与销售价格x(元/件)的函数关系式;②销售价格定为每件多少元时.获得的利润最大?最大利润是多少?【答案】(1)(2)①当时,;当时,;②销售价格定为80元/件时,获得的利润最大,最大利润是100百元【分析】(1)把把代入得,设y与x的函数关系式为:y=kx+b,把x=40,y=6;x=60,y=4,代入解方程组即可得到结论;(2)①根据x的范围分类讨论,由“总利润=单件利润×销售量”可得函数解析式;②结合①中两个函数解析式,分别依据二次函数的性质和反比例函数的性质求其最值即可.(1)解:把代入得.设y与x的函数关系式为:,∵当时,,当时,,∴,解得:,∴y与x的函数关系式为:.(2)①当时,;当时,;②当时,,∵随x的增大而增大.∴当(百元).当时,∵,∴w随x的增大而增大,当时,(百元).答:销售价格定为80元/件时,获得的利润最大,最大利润是100百元.【点睛】本题主要考查二次函数和反比例函数的应用,理解题意依据相等关系列出函数解析式,并熟练掌握二次函数和反比例函数的性质是解题的关键.4.(2022·广东阳江·九年级期末)某科技有限公司成功研制出一种市场急需的电子产品,已于当年投入生产并进行销售,已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图,其中AB段为反比例函数图像的一部分,设公司销售这种电子产品的年利润为w(万元).(1)请求出y(万件)与x(元/件)之间的函数关系式;①求出当4≤x≤8时的函数关系式;②求出当8<x≤28时的函数关系式.(2)求出这种电子产品的年利润w(万元)与x(元/件)之间的函数关系式;(3)求出年利润的最大值.【答案】(1)①y=;②y=-x+28(2)w=(3)年利润最大为114元【分析】(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入计算即可;②当8<x≤28时,设y=k′x+b(k′≠0).分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,计算即可;(2)分4≤x≤8、8<x≤28两种情况,利润w(万元)与x(元/件)之间的函数关系式;(3)分4≤x≤8、8<x≤28两种情况,分别求出w的最大值,进而求解;(1)①当4≤x≤8时,设(k≠0).将点A(4,40)的坐标代入,得k=4×40=160,∴y=②当8<x≤28时,设y=k′x+b(k′≠0).分别将点B(8,20),C(28,0)的坐标代入y=k′x+b,得解得∴y=-x+28(2)当4≤x≤8时,w=当8<x≤28时,w=(x-4)y=(x-4)(-x+28)=-x2+32x-112=-(x-16)2+114综上可知,w(万元)与x(元/件)之间的函数关系式为(3)当4≤x≤8时,∵-640<0,∴w随x增大而增大,∴当x=8时,w有最大值,为当8<x≤28时,∵-1<0∴当x=16时,w有最大值,为114∵80<114∴当每件的销售价格定为16元时,年利润最大为114元【点睛】本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.5.(2022·山东淄博·九年级期末)为了预防新冠肺炎,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y(mg)与x(min)成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1)分别求出药物燃烧时和药物燃烧后y关于x的函数关系式;(2)研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?【答案】(1)燃烧时,y=(0≤x≤8);燃烧后,y=(x>8);(2)消毒有效,见解析.【分析】(1)当0≤x≤8时,设正比例函数的解析式,代入点(8,6)计算;当x>8时,设反比例函数的解析式,代入点(8,6)计算;(2)当两个函数解析式的函数值为3时,求得对应时间,计算两个时间的时间差,比较即可.【详解】(1)当0≤x≤8时,设正比例函数的解析式为y=kx,把点(8,6)代入解析式,得8k=6,解得k=,∴y关于x的函数关系式为y=(0≤x≤8);当x>8时,设反比例函数的解析式为y=,把点(8,6)代入解析式,得m=6×8=48,∴y关于x的函数关系式为y=(x>8);(2)当y=3时,=3,解得=4;当y=3时,=3,解得=16;∴持续时间为-=16-4=12>10,∴本次消毒有效.【点睛】本题考查了一次函数,反比例函数的解析式的确定和生活中的实际意义,熟练掌握待定系数法确定解析式,灵活求自变量值是解题的关键.6.(2020·安徽合肥·九年级期末)小明同学利用寒假30天时间贩卖草莓,了解到某品种草莓成本为10元/千克,在第天的销售量与销售单价如下(每天内单价和销售量保持一致):销售量

(千克)

销售单价

(元/千克)

时,当

时,设第天的利润元.(1)请计算第几天该品种草莓的销售单价为25元/千克?(2)这30天中,该同学第几天获得的利润最大?最大利润是多少?注:利润=(售价-成本)×销售量【答案】(1)第10、20天该品种草莓的销售单价为25元/千克;(2)第10天或16天时获得的利润最大,最大利润为450元【分析】(1)分两种情形分别代入解方程即可;(2)分两种情形写出所获利润y(元)关于x(天)的函数关系式,然后根据函数的性质解答即可.【详解】(1)当时,把n=25代入得,,解得;当时,把代入得,,解得x=20;答:第10、20天该品种草莓的销售单价为25元/千克(2)当时,=;∵,当x=10时,w有最大值为450,当时,w=,∵,当时,w随x的增大而减小,∴当时,w有最大值为450.∴第10天或16天时获得的利润最大,最大利润为450元。【点睛】本题考查二次函数的应用、反比例函数的性质等知识,解题的关键是利用二次函数的性质解决问题.7.(2020·河北邢台·九年级期末)超越公司将某品牌农副产品运往新时代市场进行销售,记汽车行驶时为t小时,平均速度为v千米/小时(汽车行驶速度不超过100千米/小时).根据经验,v,t的一组对应值如下表:v(千米/小时)7580859095t(小时)4.003.753.533.333.16(1)根据表中的数据,求出平均速度v(千米/小时)关于行驶时间t(小时)的函数表达式;(2)汽车上午7:30从超越公司出发,能否在上午10:00之前到达新时代市场?请说明理由.【答案】(1),(2)不能在上午10:00之前到达新时代市场,见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论