版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.2.在△ABC中,若三边BC,CA,AB满足BC:CA:AB=3:4:5,则cosA的值为()A. B. C. D.3.代数式有意义的条件是()A. B. C. D.4.从,,,这四个数字中任取两个,其乘积为偶数的概率是()A. B. C. D.5.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500 B.300(1+2x)=1500C.300(1+x2)=1500 D.300+2x=15006.一元二次方程的根为()A. B. C. D.7.下列事件中,属于必然事件的是()A.方程无实数解B.在某交通灯路口,遇到红灯C.若任取一个实数a,则D.买一注福利彩票,没有中奖8.“一般的,如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.——苏科版《数学》九年级(下册)P21”参考上述教材中的话,判断方程x2﹣2x=﹣2实数根的情况是()A.有三个实数根 B.有两个实数根 C.有一个实数根 D.无实数根9.如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的周长比为()A.1:3 B.1:4 C.1:8 D.1:910.在△ABC中,∠C=90°,则下列等式成立的是()A.sinA= B.sinA= C.sinA= D.sinA=二、填空题(每小题3分,共24分)11.设分别为一元二次方程的两个实数根,则____.12.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm213.如图,抛物线与轴交于两点,是以点为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是________.14.一家鞋店对上一周某品牌女鞋的销量统计如下:尺码(厘米)2222.52323.52424.525销量(双)12511731该店决定本周进货时,多进一些尺码为23.5厘米的鞋,影响鞋店决策的统计量是___________.15.如图,某试验小组要在长50米,宽39米的矩形试验田中间开辟一横一纵两条等宽的小道,使剩余的面积是1800平方米,求小道的宽.若设小道的宽为米,则所列出的方程是_______(只列方程,不求解)16.直线y=2被抛物线y=x2﹣3x+2截得的线段长为_____.17.将函数y=5x2的图象向左平移2个单位,再向上平移3个单位,所得抛物线对应函数的表达式为__________.18.如图,中,,则__________.三、解答题(共66分)19.(10分)如图,中,,,面积为1.(1)尺规作图:作的平分线交于点;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,求出点到两条直角边的距离.20.(6分)如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD.连接BE、BF,使它们分别与AO相交于点G、H.(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值.21.(6分)如图,已知Rt△ABO,点B在轴上,∠ABO=90°,∠AOB=30°,OB=,反比例函数的图象经过OA的中点C,交AB于点D.(1)求反比例函数的表达式;(2)求△OCD的面积;(3)点P是轴上的一个动点,请直接写出使△OCP为直角三角形的点P坐标.22.(8分)如图,已知,点、坐标分别为、.(1)把绕原点顺时针旋转得,画出旋转后的;(2)在(1)的条件下,求点旋转到点经过的路径的长.23.(8分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)24.(8分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.25.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.26.(10分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.用“转化”的数学思想,我们还可以解一些新的方程.例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:.因为,且,所以不是原方程的根,是原方程的解.(1)问题:方程的解是,__________,__________;(2)拓展:求方程的解.
参考答案一、选择题(每小题3分,共30分)1、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【点睛】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.2、D【分析】根据已知条件,运用勾股定理的逆定理可得该三角形为直角三角形,再根据余弦的定义解答即可.【详解】解:设分别为,,为直角三角形,.【点睛】本题主要考查了勾股定理的逆定理和余弦,熟练掌握对应知识点是解答关键.3、B【分析】根据二次根式和分式成立的条件得到关于x的不等式,求解即可.【详解】解:由题意得,解得.故选:B【点睛】本题考查了代数式有意义的条件,一般情况下,若代数式有意义,则分式的分母不等于1,二次根式被开方数大于等于1.4、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种结果,∴积为偶数的概率是,故选:C.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5、A【详解】解:设2016年到2018年该地区居民年人均收入平均增长率为x,那么根据题意得2018年年收入为:300(1+x)2,列出方程为:300(1+x)2=1.故选A.6、A【解析】提公因式,用因式分解法解方程即可.【详解】一元二次方程,提公因式得:,∴或,解得:.故选:A.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解法是解题的关键.7、A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案.【详解】解:A、方程2x2+3=0的判别式△=0﹣4×2×3=﹣24<0,因此方差2x2+3=0无实数解是必然事件,故本选项正确;B、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C、若任取一个实数a,则(a+1)2>0是随机事件,故本选项错误;D、买一注福利彩票,没有中奖是随机事件,故本选项错误;故选:A.【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.8、C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.9、A【分析】以点O为位似中心,将△ABC缩小后得到△A′B′C′,OB=1OB′,可得△A′B′C′与△ABC的位似比,然后由相似三角形的性质可得△A′B′C′与△ABC的周长比.【详解】∵以点O为位似中心,将△ABC缩小后得到△A′B′C′,OB=1OB′,,∴△A′B′C′与△ABC的位似比为:1:1,∴△A′B′C′与△ABC的周长比为:1:1.故选:A.【点睛】此题考查了位似图形的性质.此题难度不大,注意三角形的周长比等于相似比.10、B【解析】分析:根据题意画出图形,进而分析得出答案.详解:如图所示:sinA=.故选B.点睛:本题主要考查了锐角三角函数的定义,正确记忆边角关系是解题的关键.二、填空题(每小题3分,共24分)11、-2025【分析】根据一元二次方程根与系数的关系即可得出,,将其代入中即可求出结论.【详解】解:,分别为一元二次方程的两个实数根,,,则.故答案为:.【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出,是解题的关键.12、60π【详解】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解:圆锥的侧面积=π×6×10=60πcm1.13、3.1【分析】连接BP,如图,先解方程=0得A(−4,0),B(4,0),再判断OQ为△ABP的中位线得到OQ=BP,利用点与圆的位置关系,BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,然后计算出BP′即可得到线段OQ的最大值.【详解】连接BP,如图,当y=0时,=0,解得x1=4,x2=−4,则A(−4,0),B(4,0),∵Q是线段PA的中点,∴OQ为△ABP的中位线,∴OQ=BP,当BP最大时,OQ最大,而BP过圆心C时,PB最大,如图,点P运动到P′位置时,BP最大,∵BC=∴BP′=1+2=7,∴线段OQ的最大值是3.1,故答案为:3.1.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.也考查了三角形中位线.14、众数【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为众数.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.熟练掌握均数、中位数、众数、方差的意义是解答本题的关键.15、(答案不唯一)【分析】可设道路的宽为xm,将4块剩余矩形平移为一个长方形,长为(50-x)m,宽为(39-x)m.根据长方形面积公式即可列出方程.【详解】解:设道路的宽为xm,依题意有
(50-x)(39-x)=1.
故答案为:.【点睛】本题考查由实际问题抽象出一元二次方程的知识,应熟记长方形的面积公式.解题关键是利用平移把4块试验田平移为一个长方形的长和宽.16、1【分析】求得直线与抛物线的交点坐标,从而求得截得的线段的长即可.【详解】解:令y=2得:x2﹣1x+2=2,解得:x=0或x=1,所以交点坐标为(0,2)和(1,2),所以截得的线段长为1﹣0=1,故答案为:1.【点睛】本题考查了二次函数的性质,解题的关键是求得直线与抛物线的交点,难度不大.17、y=5(x+2)2+3【分析】根据二次函数平移的法则求解即可.【详解】解:由二次函数平移的法则“左加右减”可知,二次函数y=5x2的图象向左平移2个单位得到y=,由“上加下减”的原则可知,将二次函数y=的图象向上平移3个单位可得到函数y=,故答案是:y=.【点睛】本题主要考查二次函数平移的法则,其中口诀是:“左加右减”、“上加下减”,注意数字加减的位置.18、17【解析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)利用尺规作图的步骤作出∠ACB的平分线交AB于点D即可;
(2)作于E,于F,根据面积求出BC的长.法一:根据角平分线的性质得出DE=DF,从而得出四边形CEDF为正方形.再由,得出,列方程可以求出结果;法二:根据,利用面积法可求得DE,DF的值.【详解】解:(1)∠ACB的平分线CD如图所示:(2)已知,面积为1,∴.法一:作,,∵是角平分线,∴,,而,∴四边形为正方形.设为,则由,∴,∴.即,得.∴点到两条直角边的距离为.法二:,即,又由(1)知AC=15,BC=20,∴,∴.故点到两条直角边的距离为.【点睛】本题考查了尺规作图,角平分线的性质,直角三角形的面积等知识,解题的关键是熟练掌握基本性质,属于中考常考题型.20、(1)1:3;(1)见解析;(3)5:3:1.【分析】(1)根据平行四边形的性质可得AO=AC,AD=BC,AD∥BC,从而可得△AEG∽△CBG,由AE=EF=FD可得BC=3AE,然后根据相似三角形的性质,即可求出EG:BG的值;(1)根据相似三角形的性质可得GC=3AG,则有AC=4AG,从而可得AO=AC=1AG,即可得到GO=AO﹣AG=AG;(3)根据相似三角形的性质可得AG=AC,AH=AC,结合AO=AC,即可得到a=AC,b=AC,c=AC,就可得到a:b:c的值.【详解】(1)∵四边形ABCD是平行四边形,∴AO=AC,AD=BC,AD∥BC,∴△AEG∽△CBG,∴.∵AE=EF=FD,∴BC=AD=3AE,∴GC=3AG,GB=3EG,∴EG:BG=1:3;(1)∵GC=3AG(已证),∴AC=4AG,∴AO=AC=1AG,∴GO=AO﹣AG=AG;(3)∵AE=EF=FD,∴BC=AD=3AE,AF=1AE.∵AD∥BC,∴△AFH∽△CBH,∴,∴=,即AH=AC.∵AC=4AG,∴a=AG=AC,b=AH﹣AG=AC﹣AC=AC,c=AO﹣AH=AC﹣AC=AC,∴a:b:c=::=5:3:1.21、(1);(2)面积为;(3)P(2,0)或(4,0)【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;(2)补形法,求出各点坐标,S△OCD=S△AOB-S△ACD-S△OBD;(3)分两种情形:①∠OPC=90°.②∠OCP=90°,分别求解即可.【详解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=,∴AB=OB=2,作CE⊥OB于E,
∵∠ABO=90°,
∴CE∥AB,
∴OC=AC,
∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为;(2)∵OB=,∴D的横坐标为,代入得,y=,∴D(,),∴BD=,∵AB=,∴AD=,∴S△OCD=S△AOB-S△ACD-S△OBD=OB•AB-AD•BE-BD•OB=(3)当∠OPC=90°时,点P的横坐标与点C的横坐标相等,C(2,2),
∴P(2,0).
当∠OCP=90°时.
∵C(2,2),
∴∠COB=45°.
∴△OCP为等腰直角三角形.
∴P(4,0).
综上所述,点P的坐标为(2,0)或(4,0).【点睛】本题主要考查的是一次函数、反比例函数的综合应用,列出关于k、n的方程组是解答问题(2)的关键,分类讨论是解答问题(3)的关键.22、(1)答案见解析;(2).【分析】(1)根据题意画出图形即可;(2)求出OA的长,再根据弧长公式即可得出结论.【详解】(1)如图所示,(2)由(1)图可得,,∴【点睛】本题考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.23、(1);(2)51m【分析】(1)作于M,根据矩形的性质得到,,根据正切的定义求出AM;(2)根据正切的定义求出DM,结合图形计算,得到答案.【详解】解:(1)作于M,则四边形ABCM为矩形,,,在中,,则,答:AB与CD之间的距离;(2)在中,,则,,答:建筑物CD的高度约为51m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.24、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.【分析】(1)设大孔所在的抛物线的解析式为,求得大孔所在的抛物线的解析式为,当时,得到,于是得到结论;(2)建立如图所示的平面直角坐标系,设小孔所在的抛物线的解析式为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋租赁付定金合同
- 家电齐全带车库住房租赁合同
- 农药买卖服务协议书
- 2024-2025学年高中数学上学期第15周 求解离心率的范围问题教学实录
- 2024年工厂租赁权转移协议书3篇
- 2024版企业食堂承包运营协议3篇
- 2024grc构件安装工程配套技术支持与培训合同
- 2024年化妆品专卖店承包合同范本3篇
- 2024版二手房购房定金合同全文模板9篇
- 2024年度三方共同开设跨境电商平台的合作协议3篇
- 西安长安相府豪宅项目营销推广全案第10稿【260p】课件
- 新人教版四年级上册《道德与法治》期末试卷【带答案】
- MOOC 计算机网络与应用-北京联合大学 中国大学慕课答案
- 宣传视频拍摄服务投标技术方案技术标
- (2024年)中华人民共和国环境保护法全
- 建筑美学智慧树知到期末考试答案2024年
- 2024平安保险测评题库
- 商会成立筹备方案
- 2024年小学三年级英语家长会课件-(带附加条款)
- 第22课+现代科技革命和产业发展(新教材课件)【中职专用】《世界历史》(高教版2023基础模块)
- 司法鉴定规范化与新司法鉴定程序通则课件
评论
0/150
提交评论