版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.z病毒扩散与传播的控制模型摘要本文基于传统的传染病模型,以微分方程的方法作为理论根底,结合采取的措施不同的情况,用MATLAB软件拟合出患者人数与时间的曲线关系,从中得出应采取的相应的应对措施。在考虑地区总人数不变,人群被分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,再将这几类分为可传染性和不可传染性两种。我们找出单位时间正常人数的变化、单位时间潜伏期病人数的变化、单位时间确诊患者人数的变化、单位时间退出的人数的变化、单位时间疑似患者人数的变化等关系建立微分方程模型,得到病毒扩散与传播的控制模型。在此根底上,我们将所要求的问题带入模型得到患者人数随时间变化的曲线图,根据这图形得出模型结果的变化。这样一来就可根据这结果的变化得出相应的应对措施。此外对该传染病的潜伏期及治愈期进展了灵敏度分析,发现潜伏期的变化会对整个模型的结果产生较大影响,而治愈期的变化只会使传染病的持续时间缩短,但对累积的患病人数影响不大。应尽量防止患者与正常人接触,减少正常人患病的可能性;加大隔离措施强度;减少拖延患者去住院的时间,让患者及时住院治疗。养成良好的卫生习惯,保证科学睡眠,适当锻炼,减少压力,保证营养,增强个人抵抗力,降低被病毒感染的危险。关键词:曲线关系微分方程模型病毒扩散与传播一、问题重述*种不完全确知的具有传染性病毒的潜伏期为天,病患者的治愈时间为天。该病毒可通过直接接触、口腔飞沫进展传播、扩散,该人群的人均每天接触人数为。为了控制病毒的扩散与传播将该人群分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,可控制参数是隔离措施强度〔潜伏期的患者被隔离的百分数〕。要求:1、在合理的假设下试建立该病毒扩散与传播的控制模型;2、利用你所建立的模型针对如下数据进展模拟条件1:;条件2:已经知道的初始发病人数为890、疑似患者为2000;条件3:隔离措施强度;条件4:患者2天后入院治疗,疑似患者2天后被隔离,试给出患者人数随时间变化的曲线图,并明确标识图中的一些特殊点的具体数据,分析结果的合理性。3、假设将2中的条件4改为条件:患者1.5天后入院治疗,疑似患者1.5天后被隔离,模拟结果有何变化.4、假设仅将2中的条件3改为条件:隔离措施强度,模拟结果有何变化.5、假设仅将2中的条件1改为条件:,模拟结果有何变化.6、分析问题中的参数对计算结果的敏感性。7、针对如上数据给政府部门写一个不超过400字的建议报告。二、问题分析在考虑地区总人数不变,人群被分为五类:确诊患者、疑似患者、治愈者、死亡和正常人,我们可知,治愈者、死亡和正常人不可能传染病毒,我们把问题转化为如何找出正确的关系表达式来表达出每天病人增加的总数的问题,找出单位时间正常人数的变化、单位时间潜伏期病人数的变化、单位时间确诊患者人数的变化、单位时间退出的人数的变化、单位时间疑似患者人数的变化等关系建立微分方程模型,得到病毒扩散与传播的控制模型。在问题一的已求出得到病毒扩散与传播的控制模型的根底上,我们将后几问所要求的问题带入模型就可得到患者人数随时间变化的曲线图,我们可以根据这些图得出模型结果的变化。这样一来就可根据这些模型结果的变化得出相应的应对措施。三、模型假设1、将病毒所有传播途径都视为与病原的接触;2、在疾病传播期间所考察地区的总人数N视为常数,即认为本地区流入的人数与流出的人数相等,时间以天为计时单位;3、该病毒处于潜伏期的病毒不具有传染性;4、治愈者二度感染的概率为0,他们以退出传染体系,因此将他们归为“退出者〞;5、不考虑这段时间人口出生率和自然死亡率,而对于由病毒引起的死亡人数,也将其归为“退出者〞;6、被隔离的人群完全断绝与外界的接触,不再具有传染性;7、不考虑被隔离而实际又未被感染者,因为这局部人没有自由活动,对疾病的传播〔感染和被感染〕根本不造成任何影响;8、将人群分为以下四类:正常人:易感染者确诊患者:传染者退出者:“治愈者〞和“死亡者〞统称;疑似患者:被隔离但还没有确诊或者排除的人员;四、符号约定:确诊病人;:潜伏期病人〔感染了但处于潜伏期没有传染性的人);:类似病人〔病症类似感染但其实没有感染的人);:退出者〔痊愈和死亡确实诊病人);:普通易感者;:病人的传染系数;:潜伏期病人的传染系数〔假设潜伏期病人也有传染性,但小于〕;:传染性病毒的潜伏期;:病患者的治愈时间;:该人群的人均每天接触人数;:可控制参数是隔离措施强度〔潜伏期的患者被隔离的百分数〕;五、模型的建立与求解5.1模型一5.1.1模型准备根据人口守恒原理,可建立如下模型:模型将疫区的总人口数看成不变(不考虑流动人口),将疫区所有的人(假设人口的自然出生率和死亡率在疫期相等)分为::确诊病人:潜伏期病人〔感染了但处于潜伏期没有传染性的人):类似病人〔病症类似感染但其实没有感染的人):退出者〔痊愈和死亡确实诊病人):普通易感者5.1.1.1单位时间正常人数的变化:……………⑴5.1.1.2单位时间潜伏期病人数的变化:…………⑵5.1.1.3单位时间确诊患者人数的变化:………⑶5.1.1.4单位时间退出的人数的变化:……⑷5.1.1.5单位时间疑似患者人数的变化:……⑸其中,,,,为初值(1)、传染病毒的平均潜伏期为,即单位时间潜伏期病人以比例常数,转为感染者;(2)、确诊病人平均死亡或痊愈的疗程为,即单位时间感染者的恢复率为;(3)、疑似患者平均疗程为,即单位时间疑似患者的恢复率为;(4)、单位时间每个易感者与病人的接触率参数为;(5)、易感者与疑似患者的接触率参数;(6)、考虑疑似患者感染病菌转为潜伏期病人,但潜伏期病人不会转为疑似患者;(7)、为隔离措施强度;(8)、为痊愈的被解除隔离的疑似患者;(9)、、和均为被隔离对象;(10)、为疑似患者;初值的设定:〔这些数据是一个根据人口总数和医学常识的估计值。〕,千万,不考虑流动人口;;;;参数的设定:,设传染病平均潜伏期为5;,设确诊病人平均死亡或痊愈的疗程为20;,设疑似病人平均疗程为20;,疑似病人与易感者的接触率参数也假设固定。5.1.2模型的建立,千万,不考虑流动人口,,,。5.2模型二5.2.1模型建立当,患者两天后入院治疗、疑似患者两天后被隔离时。这样可以得到患者人数随时间变化的曲线图:〔如下〕5.2.2结果分析从图中我们可以看出患者人数随时间变化先是急剧升高,这说明这是病毒传播初期的开展趋势,然后可以看到最高点(第12.37天)时患者人数到达最大值6803000人,通过采取患者入院治疗和疑似患者的隔离措施,我们从图中可以明显看出患者的人数呈下降趋势,并且在100天后患者人数降低到540800人。5.3模型三5.3.1模型建立当,患者1.5天后入院治疗、疑似患者1.5天后被隔离时。这样可以得到患者人数随时间变化的曲线图:〔如下〕5.3.2结果分析从图中我们可以看出在最高点(第12.39天)时患者人数到达最大值6776000人,通过采取患者入院治疗和疑似患者的隔离措施,我们从图中可以明显看出患者的人数呈下降趋势,并且在100天后患者人数降低到516500人。与问题二相比拟我们可以知道提前入院治疗可以减少患者的人数,同时也可以更好的控制病毒的传播,更好的预防正常人患病。5.4模型四5.4.1模型建立当,患者两天后入院治疗、疑似患者两天后被隔离时。这样可以得到患者人数随时间变化的曲线图:〔如下〕5.4.2结果分析从图中我们可以看到最高点(第12.12天)时患者人数到达最大值6802000人,通过采取患者入院治疗和疑似患者的隔离措施,我们从图中可以明显看出患者的人数呈下降趋势,并且在100天后患者人数降低到540800人。与问题二相比拟我们可以知道降低隔离措施会增加患者的人数,同时会对控制病毒的传播带来负面影响,会导致更多的正常人患病。所以我们建议医院加大病毒的控制强度。5.5模型五5.5.1模型建立当,患者两天后入院治疗、疑似患者两天后被隔离时。这样可以得到患者人数随时间变化的曲线图:〔如下〕5.5.2结果分析从图中我们可以看到最高点(第12.48天)时患者人数到达最大值6803000人,通过采取患者入院治疗和疑似患者的隔离措施,我们从图中可以明显看出患者的人数呈下降趋势,并且在100天后患者人数降低到540800人。与问题二相比拟我们可以知道确诊患者的人均接触人数增大时,患病顶峰期会延迟,同时会对控制病毒的传播带来负面影响,会导致更多的正常人患病。所以我们建议这些确诊患者减少与外界正常人的接触,这样减少正常人患病的可能性。5.6模型五5.6.1模型建立通过建立的模型,我们对问题二、三、四、五进展了定量的计算,问题二、三、四、五是改变模型中的一些参数的值,得到不同参数下的结果,并分析了参数的改变对患者数量最大值,到达这个最大值的时间以及疫情得到控制的时间的变化,通过对这些数据结果的分析,可以得到*一参数的改变对病毒传播过程的影响,通过数据前后的比照,可以分析参数对计算结果的敏感性,针对这个问题,通过以上几问的求解,可以得到以下表格〔表1〕:表1各个参数对应的数值问题最大值时间患病人数最大值隔离措施强度P患者入院前天数n人均每天接触人数R第二问12.37468030000.6210第三问12.3967760000.61.510第四问12.1268020000.4210第五问12.4868030000.62250〔1〕、对患者m天后入院治疗的灵敏度分析通过问题二与问题三的解答可知,我们通过改变患者入院治疗的时间,即将m分别取值为2和1.5天,然后得到患者人数随时间变化曲线〔见图1和2〕,通过分析比照可知:当m=2时,患者人数的最顶峰到达了6803000人;当m=1.5时,患者人数的最顶峰到达了6776000人。因此通过控制患者发病后入院治疗的时间就可适当的减少病情持续时间。〔2〕、对隔离强度p的灵敏度分析通过对问题二与问题四的图象的观察,我们通过改变隔离措施强度分析数据的变化,当P减小后患者人数最大值相比第二问来说增加了,同时到达这个最大值的时间也增大了,我们还可以看出病情消退的时间也稍稍的增长了,这说明隔离措施P减小时患者人数的最顶峰增大了,同时到达这个数值的时间也相应的增大了,所以我们应尽量地增大隔离措施强度P,这样来椒使病毒消退时间减小,所以政府应尽量地增大隔离措施P〔3〕、对人均每天接触人数R的灵敏度分析通过对问题二与问题五的图像观察,我们通过改变人均接触人数R分析数据的变化,当R增大时患病人数最大值在增加,同时到达这个最大值的时间也在增加,病毒的消退时间也相应地增加,所以我们应尽量控制患者人均接触人数,应尽量地让大家少接触人,这样控制了人均接触人数,病毒的消退时间也会大大减小,疫情容易得到控制5.7病毒扩散与传播控制的建议报告随着社会的进步,科学技术的开展,传统的传染病得到了有效的控制,但同时新发的传染病却不断出现,对于新发的*种不完全确知的具有传染性的病毒的突袭,我们首先要了解该病毒的传播方式,做好相应的防措施。通过本模型结果可知,被感染的人数有很大的差距,r越大被感染的人就越多,所以我们应该尽量防止与病人接触,因而要尽量少去人多的地方。隔离措施强度相比拟可知,p越小病情很越难控制,所以政府要加强隔离措施强度。且要减少拖延患者去住院的时间,让患者及时住院治疗。而且减少患者与外界人的接触,减少正常人患病的可能性。最根本的实质还是平时要养成良好的卫生习惯,保证科学睡眠,适当锻炼,减少压力,保证营养,增强个人抵抗力,才可以降低被病毒感染的危险。六、模型的评价与推广6.1模型的评价6.1.1模型的优点⑴、将医学领域的问题转化到数学领域上进展分析和讨论,可以定量地得出传染病的开展趋势以及对未来的预测结果,具有很强的理论性和可靠性。⑵、模型中涉及到的参变量都有相应的数据来源,结合一定的数据可以很方便计算出,而且各变量间关系明确,易于模型的求解。⑶、由于本文的数学模型基于连续的微分方程,不会得出准确的解析解,我们在合理参数确定的前提下,将参数进展拟合,准确模拟出传染病开展趋势走向的曲线,从宏观的角度上给社会一个明晰的概念,易于被社会承受,对政府和人们采取措施起到了指导作用,具有一定的实用价值和直观性。⑷、针对传染病对我们各方面的影响,我们给政府相应的政策,在现实生活中很具有实用性。6.1.2模型的缺乏⑴、采用微分方程方法建立数学模型,易受外界因素变化的影响,其稳定性具有相对性,这就提出了外界干扰对该模型的影响程度的研究,从而建立传染病模型的稳定性理论,这点需在模型推广中进一步讨论。⑵、模型中的参数变量有其自身的随机性,虽然我们采取对数据进展统计平均的处理方法,但在计算结果上仍存在一定的误差。⑶、模型中涉及到的参数较多,在实际生活当中很难确定各参数。6.2模型的推广我们建立该传染病模型的方法和思想对其他类似的问题也很适用,可广泛应用于人口、交通、肿瘤、战争、几何、物理、化学、体育、社会、经济等方面。对于微分模型受外界因素的干扰情况,我们可以借助一个称为雅普诺夫函数的辅助函数和扰动微分方程所计算出来的全导数的符号性质来直接推断方程组的稳定性问题,亦称为雅普诺夫直接法。七、参考文献[1]启源金星叶俊,?数学模型?〔第三版〕,:高等教育,2003。[2]甘筱青,?数学建模教育及竞赛?,:高校,2004。[3]静但琦,?数学建模与数学实验?〔第二版〕,:高等教育,2003。[4]吴建国,?数学模型案例精编?,:中国水利水电,2005。八、问题二程序:function*=ill(t,*)%s1=*(1)e=*(2)i=*(3)r=*(4)a=*(5);m1=10;m2=1*10.^(-11);w=0.6;d3=30;d2=11;d1=1;*=[-m1**(3)*(1-w)**(1)-m2*(*(5)*(1-w)+*(5)*w*1/d3)**(1),m1**(3)*(1-w)*(*(1)+*(5)*(1-w)+*(5)*w*1/d3)-2/(d1+d2)**(2),2/(d1+d2)**(2)-1/d3**(3),1/d3**(3),m2*(*(5)*(1-w)+*(5)*w*1/d3)**(1)-m1**(3)*(1-w)*(*(5)*(1-w)+*(5)*w*1/d3)]';s0=[10000000,500,890,0,2000];[t,*]=ode23s(ill,[0,100],s0)plot(t,*(:,3));holdonte*t(0,890,'(0,890)','color','r')te*t(12.37,6.803E+006,'(12.37,6.803E+006)','color','r')te*t(74,5.408E+005,'(100,5.408E+005)','color','r')plot(0,890,'g+',12.37,6.803E+006,'g+',100,5.408E+005,'g+')问题三程序:function*=ill(t,*)%s1=*(1)e=*(2)i=*(3)r=*(4)a=*(5);m1=10;m2=1*10.^(-11);w=0.6;d3=30;d2=11;d1=1;*=[-m1**(3)*(1-w)**(1)-m2*(*(5)*(1-w)+*(5)*w*1/d3)**(1),m1**(3)*(1-w)*(*(1)+*(5)*(1-w)+*(5)*w*1/d3)-2/(d1+d2)**(2),2/(d1+d2)**(2)-1/d3**(3),1/d3**(3),m2*(*(5)*(1-w)+*(5)*w*1/d3)**(1)-m1**(3)*(1-w)*(*(5)*(1-w)+*(5)*w*1/d3)]';s0=[10000000,500,890,0,2000];[t,*]=ode23s(ill,[0,100],s0)plot(t,*(:,3));holdonte*t(0,890,'(0,890)','color','r')te*t(12.39,6.776E+006,'(12.39,6.776E+006)','color','r')te*t(80,5.165E+005,'(100,5.165E+005)','color','r')plot(0,890,'g+',12.39,6.776E+006,'g+',100,5.165E+005,'g+')问题四程序:function*=ill(t,*)%s1=*(1)e=*(2)i=*(3)r=*(4)a=*(5);m1=10;m2=1*10.^(-11);w=0.4;d3=32;d2=11;d1=1;*=[-m1**(3)*(1-w)**(1)-m2*(*(5)*(1-w)+*(5)*w*1/d3)**(1),m1**(3)*(1-w)*(*(1)+*(5)*(1-w)+*(5)*w*1/d3)-2/(d1+d2)**(2),2/(d1+d2)**(2)-1/d3**(3),1/d3**(3),m2*(*(5)*(1-w)+*(5)*w*1/d3)**(1)-m1**(3)*(1-w)*(*(5)*(1-w)+*(5)*w*1/d3)]';s0=[10000000,500,890,0,2000];[t,*]=ode23s(ill,[0,100],s0)plot(t,*(:,3));hold
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度城市安全设施包工不包料施工管理协议3篇
- 2025年度战略合作合同合作目标与具体合作内容3篇
- 二零二五年度城市基础设施建设项目贷款合同6篇
- 课程设计区域标志牌
- 综合布线课程设计酒店
- 二零二五年度新型厂房出租安全管理合同2篇
- 2025年演讲有创意的自我介绍(2篇)
- 2025年幼儿园中秋节演讲稿例文(2篇)
- 轴承锻造工艺课程设计
- 安全“零隐患”抵押责任制模版(2篇)
- 新课标背景下的大单元教学研究:国内外大单元教学发展与演进综述
- (正式版)HGT 4339-2024 机械设备用涂料
- 2024年医疗器械销售总结
- 基于物联网的支护机械远程监控系统
- SLT278-2020水利水电工程水文计算规范
- 心灵养生的疗愈之道
- 建筑设计公司的商业计划书
- 人教版PEP六年级英语下册课件unit1
- 人教版四年级数学上册寒假每日一练
- 律师法律服务应急预案
- 借款债务股东共同承担协议
评论
0/150
提交评论