版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
检查答卷的主要三点,把三关:
模型的正确性、合理性、创新性结果的正确性、合理性文字表述清晰,分析精辟,摘要精彩
对分工执笔的同学的要求执笔者思路清晰,文字流畅通顺,语言优美文章结构层次分明,思想表述明确又简洁摘要、问题重述、模型假设、模型的建立、模型求解、结果分析、检验、模型检验及模型修正、结果表示、模型评价、参考文献、附录各自安排要合理恰当,体现出既专业又中肯关于写答卷前的思考和工作规划答卷需要回答哪几个问题――建模需要解决哪几个问题
问题以怎样的方式回答――结果以怎样的形式表示每个问题要列出哪些关键数据――建模要计算哪些关键数据每个量,列出一组还是多组数――要计算一组还是多组数……
答卷要求的原理
准确――科学性
条理――逻辑性
简洁――数学美
创新――研究、应用目标之一,人才培养需要
实用――建模。实际问题要求。建模理念:1.
应用意识:要解决实际问题,结果、结论要符合实际;
模型、方法、结果要易于理解,便于实际应用;
站在应用者的立场上想问题,处理问题。2.
数学建模:用数学方法解决问题,要有数学模型;
问题模型的数学抽象,方法有普适性、科学性,
不局限于本具体问题的解决。3.
创新意识:建模有特点,更加合理、科学、有效、符合实际;
更有普遍应用意义;不单纯为创新而创新。2008年北京奥运会地区临时超市点网设计
(2004年全国大学生建模比赛A题)数学建模案例(奥运场馆问题)比赛题目:2008年北京奥运会主馆场周边临时商亭网点设计
为了了解观众的购物需求和人流量的规律,假设我们在已经建设好的某运动场,举办了三次运动会,对观众发放问卷调查,采集相关数据,供解题者使用。
2008年北京奥运会的建设工作已经进入全面设计和实施阶段。奥运会期间,在比赛场馆的周边地区必须建设一个由小型商亭构建的临时商业网点。我们称之为迷你超市(MS)网,主要满足运动员,观众,游客,工作人员在奥运会期间购物需求,经营食品、旅游用品、奥运纪念品、文体用品和小日用品等等。在比赛场馆周边地区设置这种MS,在地点、大小类型和总量方面,必须满足三个基本要求:满足奥运会期间的购物需求、分布基本均衡和商业上赢利。显然,这是一个必须用科学的方法解决的问题。
在本题卷中给出了奥运会主要比赛场馆的规划图,是解决上述问题的地理平台。作为真实地图的简化,在本页结构图中仅保留了与上述问题有关的地区,以及相关内容:道路、公交车站、出租车站、自驾车停车场、地铁、餐饮部门等。并在答卷论文中明确回答以下必答问题:
假定每位观众出行平均两次,一次为进出场馆,一次为餐饮。并且出行均采取最短路径。请你依据附录中给出的问卷调查数据所反映的规律,测算图中20个商区内人流量分布(用百分比)。
2.请你设计MS类型(可以分两种大小不同规模),在20个商区内的分布(每个商区内不同类型MS的个数),以满足“题目描述”中的三个基本要求。
3.阐明你的方法的科学性和结果是贴近实际的。
问题:对结构图上标明的比赛场馆周边地区规定的商区(地图上标有A、B、C及编号的黄色填充的区域)内设计网点。原型的目的:在奥运馆场优化设计临时小超市(MS)分析结构并抽象出专业模型:1)对于设计环境抽象出与目的有关的馆场结构图。2)抽取影响设计MS的主要因素:人流量,因此在以上馆场结构图中,应该存在一个人流分布结构。3)理解设计的三条原则:满足购物需求、商业上赢利、分布均衡。实质上是在以上两种结构之上加上限制性结构——约束。用自然语言表述了原型及目的涉及的结构以及结构之间的联系,这种专业模型实际上在题目中已经给出,只要理解并再清楚地表述。建立数学模型:总体模型和每个部分的具体模型总体结构的数学模型:调查数据人流动的一般规律(数据模型)规律发现+馆场平面结构人流量在馆场结构图中的分布(网络流模型)三条原则的数学模型(约束条件)+有约束的整数规划问题各个部分的数学模型1)人流动的一般规律的数据模型:用数据挖掘方法,可以找出全部二维和三维关联规则,得到数据模型。2)将馆场平面结构图和数据模型可以建立由连通道路组成的网络流模型,进而计算出每个商区的人流量分布。3)建立三项原则的数学模型:满足需求和商业赢利都容易用数学表示。均衡性是十分灵活的特别体现“浅无边,深无底”的命题指导思想。4)最后给出整数规划问题。本问题的解决过程基本上划分为三个部分:
A.出行规律的数据模型的建立这一部分的目的是通过对三次问卷调查给出的一万条记录的数据进行分析、汇总计算,给出出行与不同类型人流的分布关系,将这些关系数据组成尽可能全面反应相关规律的数据系统。对三次调查的规律一致性给予充分关注,认为一致性规律才是一般性规律,这是很重要的一步分析。
在分析不同的出行与不同类型的人流相关联时,最简单的是采用直观选择可能的相关性使用统计相关分析进行计算。主要的关系都能计算出,但往往不够完整,其中性别与年龄段对出行方式的考虑不足,由于性别对与出行方式中存在着相关性(例如女性乘出租与私车比例较高),这一条比较容易忽略的规则对计算结果是有影响的。因为一般的统计方法需要确定相关性的对象,依赖直观的相关属性的选择,是造成不够完善的一个原因。使用系统的数据挖掘方法,挖掘出所有二维属性相关值,计算出支持度与置性度,才给出完整的数据模型。
共10600条记录,分三次获得。第一次为3500条;第二次为3200条;第三次为3900条。与人流量相关的规则,其平均比率如下:1、性别男:5549条(52.3%)女:5051条(47.7%)2、年龄:(男女比例基本上为1:1)20以下:1174人(11.1%),20-30:6150人(58%),30—50:2139人(20.2%)50以上:1137人(10.7%)3、交通数据公交:3602人(34%),公交(南北):1774人;公交(东西):1828人地铁:4030人(38%),地铁(东):2006人;地铁(西):2024人
出租车:2010人(19%)(男:女=1:2)
私车:958人(9%)(男:女=1:2)
20岁以下(1174)20-30(6150)31-50(2139)50岁以下(1137)中餐123人(10.5%)992(16.2%)807(37.7%)460(40.5%)西餐552人(47%)3809(61.9%)894(41.8%)312(27.4%)超市(购物)499人(42.5%)1349(21.9%)438(20.5%)365(32.1%)就餐数据:
购物欲:消费额20岁以下(1174)20-30(6150)31-50(2139)50岁以上(1137)0-50040(3.4%)69(1.1%)44(2.1%)53(4.7%)500-1000101(8.6%)222(3.6%)118(5.5%)551(48.5%)1000-1500478(40.6%)445(7.2%)119(5.6%)332(29.2%)1500-2000394(33.6%)372(6.1%)199(9.3%)139(12.2%)2000-2500131(11.2%)2316(37.7%)1344(62.8%)42(3.7%)2500-300030(2.6%)2726(44.3%)315(14.7%)20(1.8%)性别与消费额:消费额男(5549)女(5051)
0-500105(1.9%)101(2%)500-1000734(13.2%)258(5.1%)1000-1500823(14.8%)551(10.9%)1500-2000726(13.1%)378(7.5%)2000-25003034(54.7%)799(15.8%)2500-3000127(2.3%)2964(58.7%)B、建立数学模型来确定人流量分布—数据模型数学建模中概念的清楚的定义是很重要的,是否注意到人流量是与购物量是不同的概念,可以通过购物欲的数据,把人流量转变为购物量。但是“人流”本身也应该有明确的定义,因为性别不同和年龄段不同造成出行方式的差别和购物欲的差别。因此,将男女性别的人不加区分地统称为“人”的理解造成计算上的误差。在计算人流分布(或购物量分布)的方法上,可以构造许多创造性的数学模型。例如画出路径的网络图,确定最短路径是最普遍使用的方法;对路口节点的分析是很贴近人们出行与购物习惯的;利用了矩阵表示商区节点与出行目标之间关系数据,从而使计算变得简便等等。特别是构造电路模型或水流模型,用于计算人流分布,这种方法实际上就是网络流模型的一些变形和形象化,也可以取得很好的效果。还可以特色地引入购物心理学,适当地修正仅用商圈概念的简单模型,得到一些求人流量的公式,对于更广泛的应用是有意义的。人流分布概率的方法也是普遍有用的,应当说是取得好效果的重要方法。使用直观的图形与表格进行分析也是很重要的方法等等。项目\地区12345678910合计A区(男)6%3.33.74.35.5135.54.33.73.352.6A区(女)6.33.33.53.94.610.54.63.93.53.347.4B区(男)7.35.68.66.37.317.3
52.4B区(女)6.45.4966.414.4
47.6C区(男)9.199.325.1
52.5C区(女)8.49.68.620.9
47.5
假设不考虑年龄段的因素,简化地只考虑性别、饮食习惯、出行方式三维关联规则,从而确定各商区的人流分布百分比如下:
这一部分的目标很明确,根据人流量分布,建立适当的数学规划模型,解出商店的最优分布。但是,建模的方法很多,思想也各不相同。可以用商业盈利的要求设计目标函数使其达到最大。也可以先计算出每个商区的最大消费额,然后在达到最大消费额条件下求成本最小作为优化目标。在目标函数选择上,这两类方法各有千秋。在建立数学规划模型中,最困难的是如何为满足“均衡”性要求而表达约束条件,这是本题在设计时留下的难点,反映“深无底”的命题特色。在众多参赛论文中主要使用的是限制性约束条件,例如限制在每个商区的MS最多个数与最少个数之差达到极小的约束,这样的规划问题比较简单,也能得到比较符合实际的分布,但是对于商圈数量较大或情况比较复杂的问题,这类约束的想法显得过于简单。
C、建立数学规划模型
说明:1.商业上用“商圈”来描述商店的覆盖范围。影响商店选址的主要因素是商圈内的人流量,以及购物欲望。2.为简化,假定鸟巢(国家体育场)容量10万人,水立方(国家游泳中心)容
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高中语文第一单元第1课小石城山记课时作业含解析粤教版选修唐宋散文蚜
- 2024高中语文第四单元新闻和报告文学第11课包身工课时作业含解析新人教版必修1
- 2024年洛阳科技职业学院高职单招语文历年参考题库含答案解析
- 2024年阳江市中医医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年闽侯县医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024年朔州师范高等专科学校高职单招语文历年参考题库含答案解析
- 中国新型烟草制品行业市场动态分析及发展趋向研判报告
- 2024年宁波职业技术学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年宁夏警官职业学院高职单招职业技能测验历年参考题库(频考版)含答案解析
- 2024年四川电力职业技术学院高职单招语文历年参考题库含答案解析
- 2024年扫地机器人市场动态及行业发展分析
- 艺术学概论学习通超星期末考试答案章节答案2024年
- 2024年区域牛羊肉独家代理销售协议
- 医院消防安全知识培训课件
- 美国反无人机系统未来趋势报告 THE U.S. COUNTER-UNMANNED AERIAL SYSTEMS MARKET REPORT 2024-2029
- 地下车库地面改造施工方案
- 《护患沟通》课件
- 2JaneEyre简·爱-英文版-英文版
- 部编人教版道德与法治八年级上册:(1-4)单元全套练习题4套(含解析)
- 2024版【教科版】小学科学六年级下册全书课件全集
- 招标代理机构选取投标方案(技术标)
评论
0/150
提交评论