2022-2023学年陕西西安市交大附中数学八年级第一学期期末经典试题含解析_第1页
2022-2023学年陕西西安市交大附中数学八年级第一学期期末经典试题含解析_第2页
2022-2023学年陕西西安市交大附中数学八年级第一学期期末经典试题含解析_第3页
2022-2023学年陕西西安市交大附中数学八年级第一学期期末经典试题含解析_第4页
2022-2023学年陕西西安市交大附中数学八年级第一学期期末经典试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列句子中,不是命题的是()A.三角形的内角和等于180度 B.对顶角相等C.过一点作已知直线的垂线 D.两点确定一条直线2.如图,是的中线,,分别是和延长线上的点,连接,,且..有下列说法:①;②和的面积相等;③;④.其中正确的有()A.1个 B.2个 C.3个 D.4个3.已知A样本的数据如下:72,73,76,76,77,78,78,78,B样本的数据恰好是A样本数据每个都加2,则A,B两个样本的下列统计量对应相同的是()A.平均数 B.标准差 C.中位数 D.众数4.有下列五个命题:①如果,那么;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤三角形的一个外角大于任何一个内角.其中真命题的个数为()A.1 B.2 C.3 D.45.“高高兴兴上学,平平安安回家”,交通安全与我们每一位同学都息息相关,下列四个交通标志中,属于轴对称图形的是()A. B. C. D.6.如图所示,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm7.下列各式不是最简分式的是()A. B. C. D.8.下列各点在函数图象上的是()A. B. C. D.9.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°° B.255° C.155° D.150°10.在,5.55,,,0.232233222333…,,123,中,无理数的个数是()A.5 B.4 C.3 D.211.一次函数(m为常数),它的图像可能为()A. B.C. D.12.下列图形是轴对称图形的有()A.2个 B.3个 C.4个 D.5个二、填空题(每题4分,共24分)13.如图,在中,,,将绕点旋转到的位置,使顶点恰好在斜边上,与相交于点,则_________.14.的绝对值是________.15.等腰三角形的一个角是70°,则它的底角是_____.16.如图所示,两条直线l1,l2的交点坐标可以看作方程组_____的解.17.如图,在平面直角坐标系xOy中,点B(﹣1,3),点A(﹣5,0),点P是直线y=x﹣2上一点,且∠ABP=45°,则点P的坐标为_____.18.下列图形中全等图形是_____(填标号).三、解答题(共78分)19.(8分)观察下列等式:①;②;③……根据上述规律解决下列问题:(1)完成第四个等式:;(2)猜想第个等式(用含的式子表示),并证明其正确性.20.(8分)如图,D是等边△ABC的AB边上的一动点(不与端点A、B重合),以CD为一边向上作等边△EDC,连接AE.(1)无论D点运动到什么位置,图中总有一对全等的三角形,请找出这一对三角形,并证明你得出的结论;(2)D点在运动过程中,直线AE与BC始终保持怎样的位置关系?并说明理由.21.(8分)化简:.22.(10分)如图,在中,D是的中点,,垂足分别是.求证:AD平分.23.(10分)如图,、、的平分线交于.(1)是什么角?(直接写结果)(2)如图2,过点的直线交射线于点,交射线于点,观察线段,你有何发现?并说明理由.(3)如图2,过点的直线交射线于点,交射线于点,求证:;(4)如图3,过点的直线交射线的反向延长线于点,交射线于点,,,,求的面积.24.(10分)已知:线段,以为公共边,在两侧分别作和,并使.点在射线上.(1)如图l,若,求证:;(2)如图2,若,请探究与的数量关系,写出你的探究结论,并加以证明;(3)如图3,在(2)的条件下,若,过点作交射线于点,当时,求的度数.25.(12分)如图,,,、在上,,,求证:.26.分解因式:①4m2﹣16n2②(x+2)(x+4)+1

参考答案一、选择题(每题4分,共48分)1、C【分析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.2、C【分析】先利用AAS证明△BDF≌△CDE,则即可判断①④正确;由于AD是△ABC的中线,由于等底同高,那么两个三角形的面积相等,可判断②正确;不能判断,则③错误;即可得到答案.【详解】解:∵,,∴∠F=∠CED=90°,∵是的中线,∴BD=CD,∵∠BDF=∠CDE,∴△BDF≌△CDE(AAS),故④正确;∴BF=CE,故①正确;∵BD=CD,∴和的面积相等;故②正确;不能证明,故③错误;∴正确的结论有3个,故选:C.【点睛】本题考查了全等三角形判定和性质,以及三角形中线的性质,解题的关键是证明△BDF≌△CDE.3、B【解析】试题分析:根据样本A,B中数据之间的关系,结合众数,平均数,中位数和标准差的定义即可得到结论:设样本A中的数据为xi,则样本B中的数据为yi=xi+2,则样本数据B中的众数和平均数以及中位数和A中的众数,平均数,中位数相差2,只有标准差没有发生变化.故选B.考点:统计量的选择.4、A【分析】①根据任何非零数的平方均为正数即得;②根据两直线平行内错角相等即得;③根据直线外一点与直线上所有点的连线段中,垂线段最短即得;④根据无理数的定义:无限不循环小数是无理数即得;⑤根据三角形外角的性质:三角形的一个外角大于和它不相邻的任何一个内角即得.【详解】∵当时,∴命题①为假命题;∵内错角相等的前提是两直线平行∴命题②是假命题;∵直线外一点与直线上所有点的连线段中,垂线段最短,简称“垂线段最短”∴命题③是真命题;∵有理数∴命题④是假命题;∵在一个钝角三角形中,与钝角相邻的外角是锐角,且这个锐角小于钝角∴命题⑤是假命题.∴只有1个真命题.故选:A.【点睛】本题考查了平方根的性质,平行线的性质,垂线公理,无理数的定义及三角形外角的性质,正确理解基础知识的内涵和外延是解题关键.5、D【分析】将一个图形一部分沿一条直线对折,能与另一部分完全重合,则这个图形叫轴对称图形,据此判断即可求解.【详解】解:根据轴对称图形的定义,只有D选项图形是轴对称图形.故选:D【点睛】本题考查了轴对称图形的概念,熟知轴对称图形定义是解题关键.6、B【分析】直接利用角平分线的性质得出DE=EC,进而得出答案.【详解】解:∵△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,

∴EC=DE,

∴AE+DE=AE+EC=3cm.

故选:B.【点睛】此题主要考查了角平分线的性质,得出EC=DE是解题关键.7、B【分析】根据最简分式的概念逐项判断即得答案.【详解】解:A、是最简分式,本选项不符合题意;B、,所以不是最简分式,本选项符合题意;C、是最简分式,本选项不符合题意;D、是最简分式,本选项不符合题意.故选:B.【点睛】本题考查的是最简分式的概念,属于基础概念题型,熟知定义是关键.8、A【分析】依据函数图像上点的坐标满足解析式可得答案.【详解】解:把代入解析式得:符合题意,而,,均不满足解析式,所以不符合题意.故选A.【点睛】本题考查的是图像上点的坐标满足解析式,反之,坐标满足解析式的点在函数图像上,掌握此知识是解题的关键.9、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.点睛:本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)×180°(n≥3且n为整数)是解题的关键.10、D【解析】根据无理数的定义判断即可.【详解】,5.55,,=,123,=为有理数,无理数有:,0.232233222333,共2个,故选:D.【点睛】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.232233222333等有这样规律的数.11、A【分析】根据一次项系数-1<0可判断函数增减性,根据可判断函数与y轴交点,由此可得出正确选项.【详解】解:∵-1<0,,∴一次函数与y轴相交于非负半轴,且函数是递减的,符合条件的选项为A,故选:A.【点睛】本题考查了一次函数图象与系数的关系,熟练掌握一次函数y=kx+b的性质.当k>0,y随x的增大而增大,图象一定过第一、三象限;当k<0,y随x的增大而减小,图象一定过第二、四象限;当b>0,图象与y轴的交点在x轴上方;当b=0,图象过原点;当b<0,图象与y轴的交点在x轴下方.12、C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.二、填空题(每题4分,共24分)13、24°【分析】根据旋转的性质,得到,,然后利用三角形内角和定理,求出的度数.【详解】解:由旋转的性质,得,,∴,∵,∴,∴;故答案为:.【点睛】本题考查了旋转的性质,等边对等角,以及三角形内角和定理,解题的关键是正确得到.14、【解析】根据绝对值的意义,实数的绝对值永远是非负数,负数的绝对值是它的相反数,即可得解.【详解】解:根据负数的绝对值是它的相反数,得故答案为.【点睛】此题主要考查绝对值的意义,熟练掌握,即可解题.15、55°或70°.【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.16、【解析】先利用待定系数法求出直线l1的解析式y=x+1和直线l2的解析式y=x,然后根据一次函数与二元一次方程(组)的关系求解.【详解】设直线l1的解析式为y=kx+b,把(﹣2,0)、(2,2)代入得,解得,所以直线l1的解析式为y=x+1,设直线l2的解析式为y=mx,把(2,2)代入得2m=2,解得m=1,所以直线l2的解析式为y=x,所以两条直线l1,l2的交点坐标可以看作方程组的解.故答案为.【点睛】本题考查了一次函数与二元一次方程(组):两个一次函数的交点坐标满足两个一次函数解析式所组成的方程组.也考查了待定系数法求一次函数解析式.17、(﹣2,﹣4)【分析】将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.求出直线BK的解析式,利用方程组确定交点P坐标即可【详解】解:将线段BA绕点B逆时针旋转90°得到线段BA′,则A′(2,﹣1),取AA′的中点K(﹣,﹣),直线BK与直线y=x﹣2的交点即为点P.设直线PB的解析式为y=kx+b,把B(﹣1,3),K(﹣,﹣)代入得,解得∵直线BK的解析式为y=7x+10,由,解得,∴点P坐标为(﹣2,﹣4),故答案为(﹣2,﹣4).【点睛】本题考查利用一次函数图像的几何变换求解交点的问题,解题的关键是要充分利用特殊角度45°角进行几何变换,求解直线BP的解析式.18、⑤和⑦【解析】由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合,故答案为⑤和⑦.三、解答题(共78分)19、(1);(2)第n个等式,证明见解析.【分析】(1)根据题目中的几个等式可以写出第四个等式;

(2)根据题目中等式的规律可得第n个等式.再将整式的左边展开化简,使得化简后的结果等于等式右边即可证明结论正确.【详解】解:(1)由题目中的几个例子可得,

第四个等式是:72-4×32=13,

故答案为72-4×32=13;

(2)第n个等式是:(2n-1)2-4×(n-1)2=,

证明:∵(2n-1)2-4×(n-1)2

=4n2-4n+1-4(n2-2n+1)

=4n2-4n+1-4n2+8n-4

=4n-3=,

∴(2n-1)2-4×(n-1)2=成立.【点睛】本题考查整式的混合运算、数字的变化,解题的关键是掌握整式的混合运算法则、发现题目中等式的变化规律,写出相应的等式.20、(1)△BDC≌△AEC,理由见解析;(2)AE//BC,理由见解析【分析】(1)根据等边三角形的性质可得∠BCA=∠DCE=60°,BC=AC,DC=EC,然后根据等式的基本性质可得∠BCD=∠ACE,再利用SAS即可证出结论;(2)根据全等三角形的性质和等边三角形的性质可得∠DBC=∠EAC=60°,∠ACB=60°,然后利用平行线的判定即可得出结论.【详解】(1)△BDC≌△AEC理由如下:∵△ABC和△EDC都是等边三角形,∴∠BCA=∠DCE=60°,BC=AC,DC=EC.∴∠BCA-∠ACD=∠DCE-∠ACD∴∠BCD=∠ACE在△BDC和△AEC中∴△BDC≌△AEC(2)AE//BC理由如下:∵△BDC≌△AEC,△ABC是等边三角形∴∠DBC=∠EAC=60°,∠ACB=60°∴∠EAC=∠ACB故AE//BC【点睛】此题考查的是全等三角形判定及性质、等边三角形的性质和平行线的判定,掌握全等三角形判定及性质、等边三角形的性质和平行线的判定是解决此题的关键.21、【解析】根据完全平方公式及单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.进行求解即可.【详解】原式.【点睛】本题考查了完全平方公式及单项式乘多项式,解答本题的关键在于熟练掌握完全平方公式及单项式与多项式相乘的运算法则.22、见解析【分析】首先证明,然后有,再根据角平分线性质定理的逆定理即可证明.【详解】∵D是的中点,.,.在和中,,.,∴点D在的平分线上,∴AD平分.【点睛】本题主要考查角平分线性质定理的逆定理和全等三角形的判定及性质,掌握角平分线性质定理的逆定理和全等三角形的判定及性质是解题的关键.23、(1)直角;(2)DE=CE,理由见解析;(3)理由见解析;(4)1.【分析】(1)根据两直线平行同旁内角互补可得∠BAM+∠ABN=110°,然后由角平分线的定义可证∠BAE+∠ABE=90°,进而可得∠AEB=90°;(2)过点E作EF⊥AM,交AM与F,交BN于H,作EG⊥AB于G.由角平分线的性质可证EF=EH,然后根据“AAS”证明△CEF≌△DEH即可;(3)在AB上截取AF=AC,连接EF,可证△ACE≌△AFE,得到∠AEC=∠AEF,进而证出∠FEB=∠DEB,然后再证明△BFE≌△BDE,可得结论;(4)延长AE交BD于F,由三线合一可知AB=BF=5,AE=EF,根据“AAS”证明△ACE≌△FDE,可得DF=AC=3,设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,根据S△ABE﹣S△ACE=2,求出x的值,进而可求出△BDE的面积.【详解】解:(1)∵AM//BN,∴∠BAM+∠ABN=110°,∵AE平分∠BAM,BE平分∠ABN,∴∠BAE=BAM,∠ABE=∠ABN,∴∠BAE+∠ABE=(∠BAM+∠ABN)=90°,∴∠AEB=90°;(2)如图,过点E作EF⊥AM,交AM与F,交BN于H,作EG⊥AB于G.∵AE平分∠BAM,BE平分∠ABN,∴EF=EG=EH.∵AM//BN,∴∠CFE=∠EHD.在△CEF和△DEH中,∵∠CFE=∠DHE=90°,∠CFE=∠EHD,EF=EH,∴△CEF≌△DEH,∴DE=CE;(3)在AB上截取AF=AC,连接EF,在△ACE与△AFE中,,∴△ACE≌△AFE,∴∠AEC=∠AEF,∵∠AEB=90°,∴∠AEF+∠BEF=∠AEC+∠BED=90°,∴∠FEB=∠DEB,在△BFE与△BDE中,,∴△BFE≌△BDE,∴BF=BD,∵AB=AF+BF,∴AC+BD=AB;(4)延长AE交BD于F,∵∠AEB=90°,∴BE⊥AF,∵BE平分∠ABN,∴AB=BF=5,AE=EF,∵AM//BN,∴∠C=∠EDF,在△ACE与△FDE中,,∴△ACE≌△FDE,∴DF=AC=3,∵BF=5,∴设S△BEF=S△ABE=5x,S△DEF=S△ACE=3x,∵S△ABE﹣S△ACE=2,∴5x﹣3x=2,∴x=1,∴△BDE的面积=1.【点睛】本题考查了平行线的性质,角平分线的定义,等腰三角形的性质,三角形的面积,以及全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.24、(1)见详解;(2)+2=90°,理由见详解;(3)99°.【分析】(1)根据平行线的性质和判定定理,即可得到结论;(2)设CE与BD交点为G,由三角形外角的性质得∠CGB=∠D+∠DAE,由,得∠CGB+∠C=90°,结合,即可得到结论;(3)设∠DAE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论