版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
------.总结资料.z统计与概率经典例题〔含答案及解析〕1.〔此题8分〕为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取局部学生的数学成绩进展调查,并将调查结果绘制成如以下图表:⑴表中a和b所表示的数分别为:a=.,b=.;⑵请在图中补全频数分布直方图;⑶如果把成绩在70分以上〔含70分〕定为合格,则该学区2000名九年级考生数学成绩为合格的学生约有多少名.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,*镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:〔1〕*镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;〔2〕该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.〔12分〕一个不透明的口袋装有假设干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全一样,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复屡次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答以下问题:〔1〕验总次数,并补全条形统计图;〔2〕扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度.〔3〕该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.〔此题10分〕*校为了解2021年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如下图的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.〔1〕求表格中字母m的值及扇形统计图中“教辅类〞所对应的圆心角a的度数;〔2〕该校2021年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本.5.〔10分〕将如下图的版面数字分别是1,2,3,4的四扑克牌反面朝上,洗匀后放在桌面上〔“A〞看做是“1〞〕。〔1〕从中随机抽出一牌,牌面数字是偶数的概率是;〔3分〕〔2〕从中随机抽出两牌,两牌面数字的和是5的概率是;〔3分〕〔3〕先从中随机抽出一牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一,将牌面数字作为个位上的数字,请用画树形图的方法求组成的两位数恰好是4的倍数的概率。〔4分〕6.〔6分〕红和王伟为了争取到一观看CBA联赛的入场券,他们自设计了一个方案:转动如下图的转盘,如果指针停在阴影区域,则红得到入场券;如果指针停在白色区域,则王伟得到入场券〔转盘被等分成6个扇形。假设指针停在边界处,则重新转动转盘〕。计算红获得入场券的概率,并说明红的方案是否公平。7.〔此题总分值10分〕*中学举行“中国梦•校园好声音〞歌手大赛,根据初赛成绩,初二和初三各选出5名选手组成初二代表队和初三代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如下图.〔1〕根据图示填写下表;平均数〔分〕中位数〔分〕众数〔分〕初二85初三85100〔2〕结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;〔3〕计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.8.*校学生会准备调查初中2021级同学每天〔除课间操外〕的课外锻炼时间.〔1〕确定调查方式时,甲同学说:“我到1班去调查全体同学〞;乙同学说:“我到体育场上去询问参加锻炼的同学〞;丙同学说:“我到初中2021级每个班去随机调查一定数量的同学〞.请你指出哪位同学的调查方式最为合理;〔2〕他们采用了最为合理的调查方法收集数据,并绘制出如图-1所示的条形统计图和如图-2所示的扇形统计图,则他们共调查了多少名学生.请将两个统计图补充完整;〔3〕假设该校初中2021级共有240名同学,请你估计该年级每天〔除课间操外〕课外锻炼时间不大于20分钟的人数.〔注:图-2中相邻两虚线形成的圆心角为30°.〕9.〔10分〕〔1〕如果从袋子中任意摸出一个球,则摸到标有数字是2的球的概率是多少?〔2〕小明和小亮玩摸球游戏,游戏的规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小亮随机摸出一个球,记下数字.谁摸出的球的数字大,谁获胜.请你用树状图或列表法分析游戏规则对双方是否公平?并说明理由.10.〔本小题总分值8分〕小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全一样的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.假设摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.〔1〕用列表法或画树状图法,求小丽参赛的概率.〔2〕你认为这个游戏公平吗.请说明理由.11.〔10分〕*校学生会向全校1900名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了局部学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答以下问题:〔1〕本次承受随机抽样调查的学生人数为________,图①中m的值是________;〔2〕求本次调查获取的样本数据的平均数、众数和中位数;〔3〕根据样本数据,估计该校本次活动捐款金额为10元的学生人数.12.〔8分〕我市积极开展“体育进校园〞活动,各校学生坚持每天锻炼一小时,*校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动工程.为了解学生最喜欢哪一种工程,随机抽取了局部学生进展调查,并将调查结果绘制成如下统计图.请你结合图息解答以下问题,〔1〕样本中最喜欢B工程的人数百分比是____,其所在扇形图中的圆心角的度数是___________.〔2〕请把统计图补充完整.〔3〕该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少.13.〔8分〕如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形标上数字.游戏规则:同时转动两个转盘,当转盘停顿后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,则重转一次,直到指针指向*一区域为止.〔1〕用画树状图或列表法求乙获胜的概率;〔2〕这个游戏规则对甲、乙双方公平吗.请判断并说明理由.14.〔此题总分值8分〕“端午节〞是我国的传统佳节,民间历来有吃“粽子〞的习俗.我市*食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子的喜爱情况,在节前对*居民区市民进展了抽样调查,并将调查情况绘制成如下两幅统计图〔尚不完整〕.请根据以上信息答复:〔1〕本次参加抽样调查的居民有多少人.〔2〕将两幅不完整的图补充完整;〔3〕求扇形统计图中C所对圆心角的度数;〔4〕假设有外型完全一样的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.15.我市实施新课程改革后,学生的自主学习、合作交流能力有很大提高,教师为了了解所教班级学生自主学习、合作交流的具体情况,对本班局部学生进展了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答以下问题:〔1〕本次调查中,教师一共调查了名同学,并将上面的条形统计图补充完整。〔2〕为了共同进步,教师想从被调查的A类和D类学生中分别选取一位同学进展“一帮一〞互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.16.为了了解小学生的体能情况,抽取了*校一个年级的局部学生进展一次一分钟跳绳测试,将所得数据整理后,画出频率分布直方图〔如图〕。图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5。〔1〕求第四小组的频率。〔2〕求这次参加测试的学生数。〔3〕假设次数75次〔含75次〕以上为达标,试估计该年级学生跳绳测试的达标率是多少.〔4〕问这次测试中,学生跳绳次数的中位数落在四个小组的哪个小组.并说明理由。17.在开展“好书伴我成长〞的读书活动中,*中学为了解八年级300名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:册数01234人数31316171〔1〕求这50个样本数据的平均救,众数和中位数.〔2〕根据样本数据,估计该校八年级300名学生在本次活动中读书多于2册的人数.18.〔8分〕自从举办2021年夏季奥运会以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进展了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:00了解程度CB人数A48121620C20%BA50%图1图2〔1〕求该班共有多少名学生;(2分〕〔2〕在条形图中,将表示“一般了解〞的局部补充完整.(2’)〔3〕在扇形统计图中,计算出“了解较多〞局部所对应的圆心角的度数;(2’)〔4〕如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多〞的学生人数.(2’)19.*公司为了了解员工每人所创年利润情况,公司从各部抽取局部员工对每年所创年利润情况进展统计,并绘制如图1,图2统计图.〔1〕将图补充完整;〔2〕本次共抽取员工人,每人所创年利润的众数是,平均数是;〔3〕假设每人创造年利润10万元及〔含10万元〕以上位优秀员工,在公司1200员工中有多少可以评为优秀员工.20.〔此题8分〕为提高初中生的身体素质,教育行政部门规定:初中生每天参加户外活动的平均时间应不少于1小时.为了解学生参加户外活动的情况,*县教育行政部门对局部学生参加户外活动的时间进展了抽样调查,并将调查结果绘制成以下两幅不完整的统计图,请你根据图中提供的信息解答以下问题:〔1〕这次抽样共调查了名学生,并补全条形统计图;〔2〕计算扇形统计图中表示户外活动时间0.5小时的扇形圆心角度数;〔3〕本次调查学生参加户外活动的平均时间是否符合要求.〔写出判断过程〕局部学生每天户外活动时间条形统计图人数局部学生每天户外活动时间条形统计图人数时间〔小时〕0.511.52408012016020010014080﹒0.5小时2小时1小时36%1.5小时28%局部学生每天户外活动时间扇形统计图评卷人得分五、判断题〔题型注释〕------.总结资料.z参考答案1.⑴a=40,b=0.14;⑵图详见解析;⑶1520〔人〕【解析】试题分析:〔1〕抽查人数:20÷0.10=200〔人〕,则a=200×0.20=40〔人〕,b==0.14.〔2〕补全频数分布直方图,如图:〔3〕2000×〔0.27+0.20+0.12+0.09+0.08〕=1520〔人〕.答:该市2000名九年级考生数学成绩为合格的学生约有1520人考点:1.频数〔率〕分布直方图;2.用样本估计总体;3.频数〔率〕分布表2.16..【解析】试题分析:〔1〕根据3月份有4家,占25%,可求出*镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整;〔2〕设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:〔1〕根据统计图可知,3月份有4家,占25%,所以*镇今年1-5月新注册小型企业一共有:4÷25%=16〔家〕,1月份有:16-2-4-3-2=5〔家〕.折线统计图补充如下:〔2〕设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种,∴所抽取的2家企业恰好都是餐饮企业的概率为:.考点:1.折线统计图;2.扇形统计图;3.列表法与树状图法.3.〔1〕200,作图见试题解析;〔2〕144°;〔3〕2.【解析】试题分析:〔1〕用摸到红色球的次数除以占的百分比即是实验总次数,用总次数减去红黄绿球的次数即为摸蓝球的次数,再补全条形统计图即可;〔2〕用摸到黄色小球次数除以实验总次数,再乘以360°即可得摸到黄色小球次数所在扇形的圆心角度数;〔3〕先得出摸到绿色小球次数所占的百分比,再用口袋中有10个红球除以红球所占的百分比得出口袋中小球的总数,最后乘以绿色小球所占的百分比即可.试题解析:〔1〕50÷25%=200〔次〕,所以实验总次数为200次,条形统计图如下:〔2〕;〔3〕10÷25%×=2〔个〕,答:口袋中绿球有2个.考点:1.条形统计图;2.扇形统计图;3.模拟实验.4.〔1〕64,90°;〔2〕1000.【解析】试题分析:〔1〕首先根据科普类所占的百分比和册数求得总册数,然后相减即可求得m的值;用教辅类书籍除以总册数乘以周角即可求得其圆心角的度数;〔2〕用该年级的总人数乘以教辅类的学生所占比例,即可求出该年级共借阅教辅类书籍人数.试题解析:〔1〕观察扇形统计图知:科普类有128册,占40%,∴借阅总册数为128÷40%=320本,∴m=320﹣128﹣80﹣48=64;教辅类的圆心角为:360°×=90°;〔2〕设全校500名学生借阅教辅类书籍*本,根据题意得:,解得:*=1000,∴八年级500名学生中估计共借阅教辅类书籍约1000本.考点:1.扇形统计图;2.用样本估计总体;3.统计表;4.图表型.5.〔1〕〔2〕〔3〕【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.试题解析:解:〔1〕A,2,3,4共有4牌,随意抽取一为偶数的概率为=;〔2〕1+4=5;2+3=5,但组合一共有3+2+1=6,故概率为=;〔3〕根据题意,画树形图如下图。由树形图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44;其中恰好是4的位数的共有4种:12,24,32,44,所以P(4的倍数)=.考点:树形图,概率6.,公平【解析】试题分析:六个区域,三个红三个白,并且面积相等,所以转到两种区域的概率都是,因此红获得入场卷的概率为,所以这个方案公平.试题解析:有6种可能,阴影区域的有3种,所以概率是红获得入场券的概率是,公平.考点:概率的应用7.〔1〕平均数85众数85中位数80〔2〕平均数一样,初二的中位数较大,初二的决赛成绩较好〔3〕S2初二=70S2初三=160,初二较稳定【解析】试题分析:〔1〕根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义答复;〔2〕根据平均数和中位数的统计意义分析得出即可;〔3〕分别求出初中、高中部的方差即可.试题解析:〔1〕填表:初中平均数为:〔75+80++85+85+100〕=85〔分〕,众数85〔分〕;高中部中位数80〔分〕.〔2〕初中部成绩好些.因为两个队的平均数都一样,初中部的中位数高,所以在平均数一样的情况下中位数高的初中部成绩好些.〔3〕因为,因此,初中代表队选手成绩较为稳定.考点:平均数、众数、中位数、方差的统计意义8.〔1〕丙;〔2〕60,作图见试题解析;〔3〕220.【解析】试题分析:〔1〕丙同学提出的方案符合用样本估计总体放入思想,故最为合理;〔2〕根据表述,可补全条形图;〔3〕只要合理即可.试题解析:〔1〕丙同学提出的方案最为合理;〔2〕如图:5÷=60人,∴他们共调查了60名同学.60﹣10﹣9﹣5=36人.10÷60=,36÷60=;〔3〕〔10+36+9〕÷60×240=220人.建议:中学生应该多参加一些体育活动,加强体育锻炼,等等.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图.9.见解析【解析】试题分析:〔1〕从袋子中任意摸出一个球,可能有3种情况,可能标有1,或2,或3,符合条件的有1种可能性,即摸到标有数字是2的球的概率是QUOTE.〔2〕画出树状图或列表可知共有9种情况,分别算出两个人获胜的概率,如果相等则说明游戏公平,不相等,说明不公平.试题解析:〔1〕从袋子中任意摸出一个球,可能有3种情况,可能标有1,或2,或3,符合条件的有1种可能性,即摸到标有数字是2的球的概率是QUOTE.〔2〕游戏规则对双方公平.可以看出,一共有9种可能性,小明获胜的可能性有3种,小亮获胜的可能性有3种,所以两个人获胜的概率都是QUOTE,即游戏规则对双方是公平的.考点:利用概率解决问题.10.〔1〕;〔2〕不公平,理由见试题解析.【解析】试题分析:〔1〕列表或树状图得出所有等可能的情况数,找出数字之和为偶数的情况数,求出小丽去参赛的概率;〔2〕由小丽参赛的概率求出小华参赛的概率,比拟即可得到游戏公平与否.试题解析:〔1〕根据题意列表得:由表可知所有可能结果共有12种,且每种结果发生的可能性一样,其中摸出的两个小球上的数字和为偶数的结果有4种,分别是〔2,4〕、〔3,5〕、〔4,2〕、〔5,3〕,所以小丽参赛的概率为;〔2〕游戏不公平,理由为:∵小丽参赛的概率为,∴小华参赛的概率为,∵,∴这个游戏不公平.考点:1.游戏公平性;2.列表法与树状图法.11.〔1〕50,32;〔2〕平均数:16,众数:10,中位数:15;〔3〕608.【解析】试题分析:〔1〕根据条形统计图即可得出样本容量根据扇形统计图得出m的值即可;〔2〕利用平均数、中位数、众数的定义分别求出即可;〔3〕根据样本中捐款10元的人数,进而得出该校本次活动捐款金额为10元的学生人数.试题解析:〔1〕根据条形图4+16+12+10+8=50〔人〕,m=100﹣20﹣24﹣16﹣8=32;〔2〕∵=〔5×4+10×16+15×12+20×10+30×8〕=16,∴这组数据的平均数为:16,∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:〔15+15〕=15;〔3〕∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,∴该校本次活动捐款金额为10元的学生约有608名.考点:1.条形统计图;2.扇形统计图;3.加权平均数;4.中位数;5.众数.12.见解析【解析】试题分析:〔1〕分析统计图可知,样本中最喜欢B工程的人数百分比可用1减去其他工程所占的百分比求得,求出后再乘以360度即可求出度数;〔2〕根据〔1〕的计算结果补全图形;〔3〕用全校学生数×选乒乓球的学生所占百分比即可.试题解析:〔1〕样本中最喜欢B工程的人数百分比是1-44%-8%-28%=20%,其所在扇形图中的圆心角的度数是360°×20%=72°.〔2〕B组人数44÷44%×20%=20人,画图如下:〔3〕1200×44%=528人,全校最喜欢乒乓球的人数大约是528人.考点:1.条形统计图;2.扇形统计图;3.用样本估计总体.13.〔1〕;〔2〕公平,理由见试题解析.【解析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出甲乙获胜的概率,比拟即可.试题解析:〔1〕列表得:由列表法可知:会产生12种结果,它们出现的时机相等,其中和为1的有3种结果.∴P〔乙获胜〕=;〔2〕公平.∵P〔乙获胜〕=,P〔甲获胜〕=.∴P〔乙获胜〕=P〔甲获胜〕,∴游戏公平.考点:1.游戏公平性;2.列表法与树状图法.14.〔1〕600人;〔2〕作图见试题解析;〔3〕72°;〔4〕.【解析】试题分析:〔1〕用B的频数除以B所占的百分比即可求得结论;〔2〕分别求得C的频数及其所占的百分比即可补全统计图;〔3〕算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;〔4〕列出树形图即可求得结论.试题解析:〔1〕60÷10%=600〔人〕.答:本次参加抽样调查的居民有600人.〔2〕如图;〔3〕,360°×〔1-10%-30%-40%〕=72°.〔4〕如图;〔列表方法略,参照给分〕.P〔C粽〕=.答:他第二个吃到的恰好是C粽的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.15.〔1〕20;〔2〕.【解析】试题分析:〔1〕根据A组总人数与所占的百分比进展计算即可得解;〔2〕求出C组的总人数,然后减去男生人数即可得到女生人数,求出D组人数所占的百分比,再求出D组的总人数,然后减去女生人数得到男生人数,最后补全统计图即可;〔3〕画出树状图,根据概率公式求解即可.试题解析:〔1〕〔1+2〕÷15%=20人;C组人数为:20×25%=5人,所以,女生人数为5-3=2人,D组人数为:20×〔1-15%-50%-25%〕=20×10%=2人,所以,男生人数为2-1=1人,补全统计图如图;〔2〕画树状图如图:所有等可能结果:男男、男女、女男、女女、女男、女女,P〔一男一女〕=考点:1.条形统计图;2.扇形统计图;3.列表法与树状图法.16.〔1〕0.2〔2〕50人〔3〕90%〔4〕第三小组【解析】试题分析:〔1〕由各组频率的和等于1计算第四小组的频率;〔2〕知第一小组的频数为5,频率为0.1,则根据频率=频数÷总人数计算总人数;〔3〕计算出75分以上的频率即为达标率;〔4〕根据数据从小到大排列,可确定中位数的位置.试题解析:〔1〕第四小组的频率=1-0.1-0.3-0.4=0.2;〔2〕知第一小组的频数为5,频率为0.1,则:总人数==50人;〔3〕75分以上的频率为0.3+0.4+0.2=0.9,所以达标率为90%;〔4〕这次测试中,学生跳绳次数的中位数落在第三个小组,理由如下:因为这次参加测试的学生为50人,并且成绩从小到大排列,中位数为第25,26个数据的平均数,而第25,26个数据都落在第三个小组,所以中位数落在第三个小组.考点:1.频数〔率〕分布直方图;2.用样本估计总体;3.中位数.17.〔1〕平均数为2,众数为3,中位数为2;〔2〕108【解析】试题分析:〔1〕在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;〔2〕根据表格求出样本中学生在本次活动中读书多于2册的人数是18,占总数的,从而可估计300名学生在本次活动中读书多于2册的人数为300×=108.试题解析:〔1〕观察表格,可知这组样本救据的平均数是∴这组样本数据的平均数为2,∵在这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数为3,∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2;〔2〕在50名学生中,读书多于2本的学生有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智慧农业项目承包合同10篇
- 2025年度海参养殖基地环境保护与生态补偿合同3篇
- 2025年度昌平区校园食堂承包项目竞争性磋商合同3篇
- 2025年度新能源汽车充电车位分期付款租赁合同4篇
- 2025年度现代化猪栏设施租赁合同3篇
- 2025年度商业物业承包经营合同范本4篇
- 2025年度新能源汽车融资租赁合同范本3篇
- 2025年度宠物店宠物购买合同附宠物用品租赁服务合同3篇
- 2025年度海绵城市建设项目特许经营合同3篇
- 2025年度商业步行街摊位租赁及商业管理合同4篇
- 亚硝酸钠安全标签
- pcs-985ts-x说明书国内中文版
- GB 11887-2012首饰贵金属纯度的规定及命名方法
- 小品《天宫贺岁》台词剧本手稿
- 医院患者伤口换药操作课件
- 欠薪强制执行申请书
- 矿山年中期开采重点规划
- 资源库建设项目技术规范汇编0716印刷版
- GC2级压力管道安装质量保证体系文件编写提纲
- 预应力混凝土简支小箱梁大作业计算书
- 燃烧机论文定型机加热论文:天然气直燃热风技术在定型机中的应用
评论
0/150
提交评论