山西省大同市矿区2023学年中考数学四模试卷含答案解析_第1页
山西省大同市矿区2023学年中考数学四模试卷含答案解析_第2页
山西省大同市矿区2023学年中考数学四模试卷含答案解析_第3页
免费预览已结束,剩余18页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省大同市矿区2023学年中考数学四模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、测试卷卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,在平面直角坐标系中,抛物线y=-x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为().A.3 B. C. D.2.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1 B.m≤1 C.m>1 D.m<13.关于x的一元二次方程x2-4x+k=0有两个相等的实数根,则k的值是()A.2 B.-2 C.4 D.-44.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34° B.56° C.66° D.146°5.下列方程中,没有实数根的是()A. B.C. D.6.计算36÷(﹣6)的结果等于()A.﹣6 B.﹣9 C.﹣30 D.67.如图,在四边形ABCD中,∠A=120°,∠C=80°.将△BMN沿着MN翻折,得到△FMN.若MF∥AD,FN∥DC,则∠F的度数为()A.70° B.80° C.90° D.100°8.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF,其中正确的结论A.只有①②. B.只有①③. C.只有②③. D.①②③.9.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根10.数轴上有A,B,C,D四个点,其中绝对值大于2的点是()A.点A B.点B C.点C D.点D11.如图所示是放置在正方形网格中的一个,则的值为()A. B. C. D.12.的值是()A.1 B.﹣1 C.3 D.﹣3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若x,y为实数,y=,则4y﹣3x的平方根是____.14.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.15.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为_____.16.如图,有一直径是的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为米.17.对于实数a,b,定义运算“※”如下:a※b=a2﹣ab,例如,5※3=52﹣5×3=1.若(x+1)※(x﹣2)=6,则x的值为_____.18.“五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示.第五组被抽到的概率是___.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为支持农村经济建设,某玉米种子公司对某种种子的销售价格规定如下:每千克的价格为a元,如果一次购买2千克以上的种子,超过2千克部分的种子价格打8折,某农户对购买量和付款金额这两个变量的对应关系用列表做了分析,并绘制出了函数图象,如图所示,其中函数图象中A点的左边为(2,10),请你结合表格和图象,回答问题:购买量x(千克)11.522.53付款金额y(元)a7.51012b(1)由表格得:a=;b=;(2)求y关于x的函数解析式;(3)已知甲农户将8元钱全部用于购买该玉米种子,乙农户购买4千克该玉米种子,如果他们两人合起来购买,可以比分开购买节约多少钱?20.(6分)今年,我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为75海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)21.(6分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)22.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.23.(8分)某天,甲、乙、丙三人一起乘坐公交车,他们上车时发现公交车上还有A,B,W三个空座位,且只有A,B两个座位相邻,若三人随机选择座位,试解决以下问题:(1)甲选择座位W的概率是多少;(2)试用列表或画树状图的方法求甲、乙选择相邻座位A,B的概率.24.(10分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:T恤每件的售价/元每件的成本/元甲50乙60(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?25.(10分)(5分)计算:(126.(12分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线.交BC于点E.求证:BE=EC填空:①若∠B=30°,AC=2,则DE=______;②当∠B=______度时,以O,D,E,C为顶点的四边形是正方形.27.(12分)我市某企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:工人甲第几天生产的产品数量为70件?设第x天生产的产品成本为P元/件,P与的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时利润最大,最大利润是多少?

2023学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【答案解析】

连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到点B,再利用配方法得到点A,得到OA的长度,判断△AOB为等边三角形,然后利用∠OAP=30°得到PH=AP,利用抛物线的性质得到PO=PB,再根据两点之间线段最短求解.【题目详解】连接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如图当y=0时-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB为等边三角形,∠OAP=30°得到PH=AP,因为AP垂直平分OB,所以PO=PB,所以OP+AP=PB+PH,所以当H,P,B共线时,PB+PH最短,而BC=AB=3,所以最小值为3.故选A.【答案点睛】本题考查的是二次函数的综合运用,熟练掌握二次函数的性质和最短途径的解决方法是解题的关键.2、D【答案解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.详解:∵方程有两个不相同的实数根,∴解得:m<1.故选D.点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.3、C【答案解析】

对于一元二次方程a+bx+c=0,当Δ=-4ac=0时,方程有两个相等的实数根.即16-4k=0,解得:k=4.考点:一元二次方程根的判别式4、B【答案解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.5、B【答案解析】

分别计算四个方程的判别式的值,然后根据判别式的意义确定正确选项.【题目详解】解:A、△=(-2)2-4×(-3)=16>0,方程有两个不相等的两个实数根,所以A选项错误;

B、△=(-2)2-4×3=-8<0,方程没有实数根,所以B选项正确;

C、△=(-2)2-4×1=0,方程有两个相等的两个实数根,所以C选项错误;

D、△=(-2)2-4×(-1)=8>0,方程有两个不相等的两个实数根,所以D选项错误.

故选:B.【答案点睛】本题考查根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0根时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6、A【答案解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1.故选A.点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.7、B【答案解析】

首先利用平行线的性质得出∠BMF=120°,∠FNB=80°,再利用翻折变换的性质得出∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,进而求出∠B的度数以及得出∠F的度数.【题目详解】∵MF∥AD,FN∥DC,∠A=120°,∠C=80°,

∴∠BMF=120°,∠FNB=80°,

∵将△BMN沿MN翻折得△FMN,

∴∠FMN=∠BMN=60°,∠FNM=∠MNB=40°,

∴∠F=∠B=180°-60°-40°=80°,

故选B.【答案点睛】主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.8、D【答案解析】

解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,则△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S四边形CMGN=1S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.③过点F作FP∥AE于P点.∵AF=1FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=1AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选D.9、A【答案解析】

根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【题目详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【答案点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.10、A【答案解析】

根据绝对值的含义和求法,判断出绝对值等于2的数是﹣2和2,据此判断出绝对值等于2的点是哪个点即可.【题目详解】解:∵绝对值等于2的数是﹣2和2,∴绝对值等于2的点是点A.故选A.【答案点睛】此题主要考查了绝对值的含义和求法,要熟练掌握,解答此题的关键要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.11、D【答案解析】

首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【题目详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形,∵BD=4,AD=2,∴tan∠ABC=故选:D.【答案点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.12、B【答案解析】

直接利用立方根的定义化简得出答案.【题目详解】因为(-1)3=-1,=﹣1.故选:B.【答案点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键.,二、填空题:(本大题共6个小题,每小题4分,共24分.)13、±【答案解析】∵与同时成立,∴故只有x2﹣4=0,即x=±2,又∵x﹣2≠0,∴x=﹣2,y==﹣,4y﹣3x=﹣1﹣(﹣6)=5,∴4y﹣3x的平方根是±.故答案:±.14、2【答案解析】

解:这组数据的平均数为2,

有(2+2+0-2+x+2)=2,

可求得x=2.

将这组数据从小到大重新排列后,观察数据可知最中间的两个数是2与2,

其平均数即中位数是(2+2)÷2=2.

故答案是:2.15、1【答案解析】

解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半径为1,故答案为1.【答案点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键.16、【答案解析】

先利用△ABC为等腰直角三角形得到AB=1,再设圆锥的底面圆的半径为r,则根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后解方程即可.【题目详解】∵⊙O的直径BC=,

∴AB=BC=1,

设圆锥的底面圆的半径为r,

则2πr=,解得r=,

即圆锥的底面圆的半径为米故答案为.17、2【答案解析】

根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【题目详解】由题意得,(x+2)2﹣(x+2)(x﹣2)=6,整理得,3x+3=6,解得,x=2,故答案为2.【答案点睛】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键.18、【答案解析】

根据概率是所求情况数与总情况数之比,可得答案.【题目详解】因为共有六个小组,所以第五组被抽到的概率是,故答案为:.【答案点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)5,1(2)当0<x≤2时,y=5x,当x>2时,y关于x的函数解析式为y=4x+2(3)1.6元.【答案解析】

(1)结合函数图象与表格即可得出购买量为函数的自变量,再根据购买2千克花了10元钱即可得出a值,结合超过2千克部分的种子价格打8折可得出b值;(2)分段函数,当0≤x≤2时,设线段OA的解析式为y=kx;当x>2时,设关系式为y=k1x+b,然后将(2,10),且x=3时,y=1,代入关系式即可求出k,b的值,从而确定关系式;(3)代入(2)的解析式即可解答.【题目详解】解:(1)结合函数图象以及表格即可得出购买量是函数的自变量x,∵10÷2=5,∴a=5,b=2×5+5×0.8=1.故答案为a=5,b=1.(2)当0≤x≤2时,设线段OA的解析式为y=kx,∵y=kx的图象经过(2,10),∴2k=10,解得k=5,∴y=5x;当x>2时,设y与x的函数关系式为:y=x+b∵y=kx+b的图象经过点(2,10),且x=3时,y=1,,解得,∴当x>2时,y与x的函数关系式为:y=4x+2.∴y关于x的函数解析式为:;(3)甲农户将8元钱全部用于购买该玉米种子,即5x=8,解得x=1.6,即甲农户购买玉米种子1.6千克;如果他们两人合起来购买,共购买玉米种子(1.6+4)=5.6千克,这时总费用为:y=4×5.6+2=24.4元.(8+4×4+2)−24.4=1.6(元).答:如果他们两人合起来购买,可以比分开购买节约1.6元.【答案点睛】本题主要考查了一次函数的应用和待定系数法求一次函数解析式,根据已知得出图表中点的坐标是解题的关键.注意:求正比例函数,只要一对x,y的值就可以;而求一次函数y=kx+b,则需要两组x,y的值.20、(1)B点到直线CA的距离是75海里;(2)执法船从A到D航行了(75﹣25)海里.【答案解析】

(1)过点B作BH⊥CA交CA的延长线于点H,根据三角函数可求BH的长;(2)根据勾股定理可求DH,在Rt△ABH中,根据三角函数可求AH,进一步得到AD的长.【题目详解】解:(1)过点B作BH⊥CA交CA的延长线于点H,∵∠MBC=60°,∴∠CBA=30°,∵∠NAD=30°,∴∠BAC=120°,∴∠BCA=180°﹣∠BAC﹣∠CBA=30°,∴BH=BC×sin∠BCA=150×=75(海里).答:B点到直线CA的距离是75海里;(2)∵BD=75海里,BH=75海里,∴DH==75(海里),∵∠BAH=180°﹣∠BAC=60°,在Rt△ABH中,tan∠BAH==,∴AH=25,∴AD=DH﹣AH=(75﹣25)(海里).答:执法船从A到D航行了(75﹣25)海里.【答案点睛】本题主要考查了勾股定理的应用,解直角三角形的应用-方向角问题.能合理构造直角三角形,并利用方向角求得三角形内角的大小是解决此题的关键.21、-17.1【答案解析】

按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【题目详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【答案点睛】此题要注意正确掌握运算顺序以及符号的处理.22、见解析【答案解析】测试卷分析:依据题意,可通过证△ABC≌△EFD来得出AB=EF的结论,两三角形中,已知的条件有AB∥EF即∠B=∠F,∠A=∠E,BD=CF,即BC=DF;可根据AAS判定两三角形全等解题.

证明:∵AB∥EF,∴∠B=∠F.又∵BD=CF,∴BC=FD.在△ABC与△EFD中,∴△ABC≌△EFD(AAS),∴AB=EF.23、(1);(2)【答案解析】

(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,从中找到符合要求的结果数,利用概率公式计算可得.【题目详解】解:(1)由于共有A、B、W三个座位,∴甲选择座位W的概率为,故答案为:;(2)画树状图如下:由图可知,共有6种等可能结果,其中甲、乙选择相邻的座位有两种,所以P(甲乙相邻)==.【答案点睛】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.24、(1)10750;(2);(3)最大利润为10750元.【答案解析】

(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;(2)根据题意,分两种情况进行讨论:①0<m<200;②200≤m≤400时,根据“利润=销售总额-总成本”即可求得各相关函数关系式;(3)求出(2)中各函数最大值,进行比较即可得到结论.【题目详解】(1)∵甲种T恤进货250件∴乙种T恤进货量为:400-250=150件故由题意得,;(2)①②;故.(3)由题意,,①,,②,综上,最大利润为10750元.【答案点睛】本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.25、8+23【答案解析】测试卷分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.测试卷解析:原式=9+1-(2-3)+2×3考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.26、(1)见解析;(2)①3;②1.【答案解析】

(1)证出EC为⊙O的切线;由切线长定理得出EC=ED,再求得EB=ED,即可得出结论;(2)①由含30°角的直角三角形的性质得出AB,由勾股定理求出BC,再由直角三角形斜边上的中线性质即可得出DE;②由等腰三角形的性质,得到∠ODA=∠A=1°,于是∠DOC=90°然后根据有一组邻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论