2022-2023学年四川省绵阳第五中学数学九年级第一学期期末学业质量监测试题含解析_第1页
2022-2023学年四川省绵阳第五中学数学九年级第一学期期末学业质量监测试题含解析_第2页
2022-2023学年四川省绵阳第五中学数学九年级第一学期期末学业质量监测试题含解析_第3页
2022-2023学年四川省绵阳第五中学数学九年级第一学期期末学业质量监测试题含解析_第4页
2022-2023学年四川省绵阳第五中学数学九年级第一学期期末学业质量监测试题含解析_第5页
免费预览已结束,剩余16页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.sin45°的值是()A. B. C. D.2.如图所示的几何体为圆台,其俯视图正确的是A. B. C. D.3.如图,是坐标原点,菱形顶点的坐标为,顶点在轴的负半轴上,反比例函数的图象经过顶点,则的值为()A. B. C. D.4.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<05.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣0123…y…2m﹣1﹣﹣2﹣﹣12…可以推断m的值为()A.﹣2 B.0 C. D.26.如图,将绕点,按逆时针方向旋转120°,得到(点的对应点是点,点的对应点是点),连接.若,则的度数为()A.15° B.20° C.30° D.45°7.正六边形的边心距与半径之比为()A. B. C. D.8.关于x的一元二次方程x2+bx-6=0的一个根为2,则b的值为()A.-2 B.2 C.-1 D.19.如图所示,⊙的半径为13,弦的长度是24,,垂足为,则A.5 B.7 C.9 D.1110.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,则BC的长为()A.3sin35° B. C.3cos35° D.3tan35°二、填空题(每小题3分,共24分)11.在-1、0、、1、、中任取一个数,取到无理数的概率是____________12.若x1,x2是一元二次方程2x2+x-3=0的两个实数根,则x1+x2=____.13.二次函数y=ax1+bx+c(a≠2)的部分图象如图,图象过点(﹣1,2),对称轴为直线x=1.下列结论:①4a+b=2;②9a+c>3b;③当x>﹣1时,y的值随x值的增大而增大;④当函数值y<2时,自变量x的取值范围是x<﹣1或x>5;⑤8a+7b+1c>2.其中正确的结论是_____.14.如图,一次函数与的图象交于点,则关于的不等式的解集为______.15.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为________cm.16.若能分解成两个一次因式的积,则整数k=_________.17.如果,那么的值为______.18.如图,在直角坐标系中,已知点、,对连续作旋转变换,依次得到,则的直角顶点的坐标为__________.三、解答题(共66分)19.(10分)在中,,,,点从出发沿方向在运动速度为3个单位/秒,点从出发向点运动,速度为1个单位/秒,、同时出发,点到点时两点同时停止运动.(1)点在线段上运动,过作交边于,时,求的值;(2)运动秒后,,求此时的值;(3)________时,.20.(6分)如图所示的双曲线是函数为常数,)图象的一支若该函数的图象与一次函数的图象在第一象限的交点为,求点的坐标及反比例函数的表达式.21.(6分)计算:(1)sin30°-(5-tan75°)0;(2)3tan230°-sin45°+sin60°.22.(8分)小明手中有一根长为5cm的细木棒,桌上有四个完全一样的密封的信封.里面各装有一根细木棒,长度分别为:2、3、4、5(单位:cm).小明从中任意抽取两个信封,然后把这3根细木棒首尾顺次相接,求它们能搭成三角形的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)为了“城市更美好、人民更幸福”,我市开展“三城联创”活动,环卫部门要求垃圾按三类分别装袋、投放,其中类指废电池,过期药品等有毒垃圾,类指剩余食品等厨余垃圾,类指塑料、废纸等可回收垃圾,甲、乙两人各投放一袋垃圾.(1)甲投放的垃圾恰好是类的概率是;(2)用树状图或表格求甲、乙两人投放的垃圾是不同类别的概率.24.(8分)已知关于x的方程x2-6x+k=0的两根分别是x1、x2.(1)求k的取值范围;(2)当+=3时,求k的值.25.(10分)如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB=,求直线AB对应的函数表达式.26.(10分)如图,在矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取一点O,以点O为圆心,OF为半径作⊙O与AD相切于点P.AB=6,BC=(1)求证:F是DC的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】将特殊角的三角函数值代入求解.【详解】解:sin45°=.故选:B.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2、C【解析】试题分析:俯视图是从物体上面看,所得到的图形.从几何体的上面看所得到的图形是两个同心圆.故选C.考点:简单几何体的三视图3、C【分析】根据点C的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k的值即可.【详解】∵,

∴,∵四边形OABC是菱形,

∴AO=CB=OC=AB=5,

则点B的横坐标为,

故B的坐标为:,

将点B的坐标代入得,,

解得:.

故选:C.【点睛】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B的坐标.4、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【点睛】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.5、C【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(,﹣)和(,﹣),所以对称轴为x==1,∵,∴点(﹣,m)和(,)关于对称轴对称,∴m=,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.6、C【分析】根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质即可得∠C′AB′=∠AB′B=30°.【详解】解:∵将△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,

∴∠BAB′=∠CAC′=120°,AB=AB′,

∴∠AB′B=(180°-120°)=30°,

∵AC′∥BB′,

∴∠C′AB′=∠AB′B=30°,

∴∠CAB=∠C′AB′=30°,

故选:C.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.7、C【分析】我们可设正六边形的边长为2,欲求半径、边心距之比,我们画出图形,通过构造直角三角形,解直角三角形即可得出.【详解】如右图所示,边长AB=2;又该多边形为正六边形,故∠OBA=60°,在Rt△BOG中,BG=1,OG=,所以AB=2,即半径、边心距之比为.故选:C.【点睛】此题主要考查正多边形边长的计算问题,要求学生熟练掌握应用.8、D【分析】根据一元二次方程的解的定义,把x=2代入方程得到关于b的一次方程,然后解一次方程即可.【详解】解:把x=2代入程x2+bx-6=0得4+2b-6=0,解得b=1.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.9、A【详解】试题分析:已知⊙O的半径为13,弦AB的长度是24,,垂足为N,由垂径定理可得AN=BN=12,再由勾股定理可得ON=5,故答案选A.考点:垂径定理;勾股定理.10、C【分析】根据余弦定义求解即可.【详解】解:如图,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故选:C.【点睛】本题考查了锐角三角函数,属于基础题型,熟练掌握余弦的定义是解此题的关键.二、填空题(每小题3分,共24分)11、【详解】解:根据无理数的意义可知无理数有:,,因此取到无理数的概率为.故答案为:.考点:概率12、【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=,x1•x2=.13、①④⑤.【分析】根据二次函数图象的开口方向、对称轴、顶点坐标、增减性以及二次函数与一元二次方程的关系,逐项判断即可.【详解】解:抛物线过点(﹣1,2),对称轴为直线x=1.∴x==1,与x轴的另一个交点为(5,2),即,4a+b=2,故①正确;当x=﹣3时,y=9a﹣3b+c<2,即,9a+c<3b,因此②不正确;当x<1时,y的值随x值的增大而增大,因此③不正确;抛物线与x轴的两个交点为(﹣1,2),(5,2),又a<2,因此当函数值y<2时,自变量x的取值范围是x<﹣1或x>5,故④正确;当x=3时,y=9a+3b+c>2,当x=4时,y=16a+4b+c>2,∴15a+7b+1c>2,又∵a<2,∴8a+7b+c>2,故⑤正确;综上所述,正确的结论有:①④⑤,故答案为:①④⑤.【点睛】本题主要考查二次函数图像性质,解决本题的关键是要熟练掌握二次函数图像性质.14、【分析】先把代入求出n的值,然后根据图像解答即可.【详解】把代入,得-n-2=-4,∴n=2,∴当x<2时,.故答案为:x<2.【点睛】本题主要考查一次函数图像上点的坐标特征,以及一次函数和一元一次不等式的关系、数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.15、8【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm,BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.16、【分析】根据题意设多项式可以分解为:(x+ay+c)(2x+by+d),则2c+d=k,根据cd=6,求出所有符合条件的c、d的值,然后再代入ad+bc=0求出a、b的值,与2a+b=1联立求出a、b的值,a、b是整数则符合,否则不符合,最后把符合条件的值代入k进行计算即可.【详解】解:设能分解成:(x+ay+c)(2x+by+d),即2x2+aby2+(2a+b)xy+(2c+d)x+(ad+bc)y+cd,∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad+bc=6a+b=0,与2a+b=1联立求解得,或c=6,d=1时,ad+bc=a+6b=0,与2a+b=1联立求解得,②c=2,d=3时,ad+bc=3a+2b=0,与2a+b=1联立求解得,或c=3,d=2时,ad+bc=2a+3b=0,与2a+b=1联立求解得,③c=-2,d=-3时,ad+bc=-3a-2b=0,与2a+b=1联立求解得,或c=-3,d=-2,ad+bc=-2a-3b=0,与2a+b=1联立求解得,④c=-1,d=-6时,ad+bc=-6a-b=0,与2a+b=1联立求解得,或c=-6,d=-1时,ad+bc=-a-6b=0,与2a+b=1联立求解得,∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c+d=2×2+3=1,k=2c+d=2×(-2)+(-3)=-1,∴整数k的值是1,-1.故答案为:.【点睛】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a、b进行验证,注意不要漏解.17、【分析】利用因式分解法求出的值,再根据可得最终结果.【详解】解:原方程可化为:,解得:或,∵,∴.故答案为:.【点睛】本题考查的知识点是解一元二次方程以及锐角三角函数的定义,熟记正弦的取值范围是解此题的关键.18、【分析】根据勾股定理列式求出AB的长,再根据第四个三角形与第一个三角形的位置相同可知每三个三角形为一个循环组依次循环,然后求出一个循环组旋转前进的长度,再用2019除以3,根据商为673可知第2019个三角形的直角顶点为循环组的最后一个三角形的顶点,求出即可.【详解】解:∵点A(-3,0)、B(0,4),

∴AB==5,

由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,

∵2019÷3=673,

∴△2019的直角顶点是第673个循环组的最后一个三角形的直角顶点,

∵673×12=8076,

∴△2019的直角顶点的坐标为(8076,0).故答案为(8076,0).【点睛】本题主要考查了点的坐标变化规律,仔细观察图形得到每三个三角形为一个循环组依次循环是解题的关键,也是求解的难点.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.三、解答题(共66分)19、(1)2;(2)或;(3)【分析】(1)如图1中,作于,于,利用勾股定理求出AC=10,根据,得到,求出,,,证明四边形是矩形,得到,证明,得到;(2)作于,根据,得到,求出,,,再证明,得到,即可求出或;(3)如图3中作于,证明,求出,利用得到,根据即可列式求出t.【详解】(1)如图1中,作于,于,∵,,,∴AC=10,∵,∴,,∵,∴,∴,∴,,,∵,∴四边形是矩形,∴,∵,∴,∴,∴.(2)如图2中,作于,∵,∴,∴,,,∵,,∴,∴,∴,∴或.(3)如图3中作于,∵,,∴,∴,∴,∵,∴,∵,∴,整理得:,解得(或舍弃).故答案为:.【点睛】此题考查勾股定理,相似三角形的判定及性质,矩形的判定及性质,三角形与动点问题,是一道比较综合的三角形题.20、点的坐标为;反比例函数的表达式为.【分析】先将x=2代入一次函数中可得,点的坐标为,再将点A的坐标代入可得反比例函数的解析式.【详解】解:点在一次函数的图象上,点的坐标为.又点在反比例函数为常数,)的图象上,反比例函数的表达式为.【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.21、(1)﹣(2)【分析】(1)根据特殊角的三角函数值和非零的数的零次幂,即可求解;(2)根据特殊角的三角函数值,即可求解.【详解】(1)sin30°-(5-tan75°)0=-1=﹣;(2)3tan230°-sin45°+sin60°=3×()2-×+×=1-1+=.【点睛】本题主要考查特殊角的三角函数值和非零的数的零次幂,掌握特殊角的三角函数值,是解题的关键.22、【分析】根据题意画出树状图,然后结合概率的计算公式求解即可.【详解】解:画树状图如下:由树状图可知,共有12种等可能结果,其中能围成三角形的结果共有10种,所以能搭成三角形的概率为=.【点睛】本题考查了三角形三条边的关系及概率的计算,,解题的关键是正确画出树状图,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.23、(1);(2).【分析】(1)一共有3种等可能的结果,恰为类的概率是(2)根据题意列出所有等可能的结果数,然后根据概率公式求解.【详解】(1)(2)甲乙ABCA(A,A)(A,B)(A,C)B(B,A)(B,B)(B,C)C(C,A)(C,B)(C,C)由表格可知,甲、乙两人投放的垃圾共有9种结果,每种结果出现的可能性相同,其中甲、乙投放的垃圾恰是不同类别的有6种,即(A,B),(A,C),(B,A),(B,C),(C,A),(C,B),∴(甲、乙投放的垃圾是不同类别).【点睛】本题考查了列表法或树状图以及概率的求法.24、(1)k≤9;(2)2【分析】(1)根据判别式的意义得到Δ=(-6)2-4k=36-4k≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=6,x1x2=k,再利用=3得到=3,得到满足条件的k的值.【详解】(1)∵方程有两根∴Δ=(-6)2-4k=36-4k≥0∴k≤9;(2)由已知可得,x1+x2=6,x1x2=k∴+==3∴=3∴k=2<9∴当+=3时,k的值为2.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,.也考查了根的判别式.25、(1)见解析;(2)【分析】,(1)连接OB,根据题意可证明△OAB∽△CAO,继而可推出OB⊥AB,根据切线定理即可求证结论;(2)根据勾股定理可求得OA=2及A点坐标,根据相似三角形的性质可得,进而可求CO的长及C点坐标,利用待定系数法,设直线AB对应的函数表达式为y=kx+b,再把点A、C的坐标代入求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论