江苏省无锡市锡山区锡东片2022-2023学年九年级数学第一学期期末学业质量监测试题含解析_第1页
江苏省无锡市锡山区锡东片2022-2023学年九年级数学第一学期期末学业质量监测试题含解析_第2页
江苏省无锡市锡山区锡东片2022-2023学年九年级数学第一学期期末学业质量监测试题含解析_第3页
江苏省无锡市锡山区锡东片2022-2023学年九年级数学第一学期期末学业质量监测试题含解析_第4页
江苏省无锡市锡山区锡东片2022-2023学年九年级数学第一学期期末学业质量监测试题含解析_第5页
免费预览已结束,剩余14页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中,中心对称图形有()A.4个 B.3个 C.2个 D.1个2.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.3.下列方程是一元二次方程的是()A.3x2+=0 B.(3x-1)(3x+1)=3C.(x-3)(x-2)=x2 D.2x-3y+1=04.已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是()A.1 B.2 C.3 D.45.在Rt△ABC中,∠C=90°,AC=5,BC=12,则cosB的值为()A. B. C. D.6.已知,下列变形错误的是()A. B. C. D.7.已知二次函数,当时随的增大而减小,且关于的分式方程的解是自然数,则符合条件的整数的和是()A.3 B.4 C.6 D.88.已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<09.m是方程的一个根,且,则的值为()A. B.1 C. D.10.若式子在实数范围内有意义,则的取值范围是()A. B. C. D.二、填空题(每小题3分,共24分)11.若扇形的半径长为3,圆心角为60°,则该扇形的弧长为___.12.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.13.如果,那么__________.14.如图,△ABC的两条中线AD,BE交于点G,EF∥BC交AD于点F.若FG=1,则AD=_____.15.若=2,则=_____.16.若,则=____________.17.已知方程的两实数根的平方和为,则k的值为____.18.如图,⊙O与直线相离,圆心到直线的距离,,将直线绕点逆时针旋转后得到的直线刚好与⊙O相切于点,则⊙O的半径=.三、解答题(共66分)19.(10分)在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标:;(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标:.20.(6分)如图,是的直径,为上一点,于点,交于点,与交于点为延长线上一点,且.(1)求证:是的切线;(2)求证:;(3)若,求的长.21.(6分)甲、乙、丙、丁四个人做“击鼓传花”游戏,游戏规则是:第一次由甲将花随机传给乙、丙、丁三人中的某一人,以后的每一次传花都是由接到花的人随机传给其他三人中的某一人.(1)求第一次甲将花传给丁的概率;(2)求经过两次传花,花恰好回到甲手中的概率.22.(8分)篮球课上,朱老师向学生详细地讲解传球的要领时,叫甲、乙、丙、丁四位同学配合朱老师进行传球训练,朱老师把球传给甲同学后,让四位同学相互传球,其他人观看体会,当甲同学第一个传球时,求甲同学传给下一个同学后,这个同学再传给甲同学的概率23.(8分)已知,二次函数的图象,如图所示,解决下列问题:(1)关于的一元二次方程的解为;(2)求出抛物线的解析式;(3)为何值时.24.(8分)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y(℃)与开机时间x(分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y(℃)与开机时间x(分)成反比例关系,当水温降至20C时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明上午八点将饮水机在通电开机(此时饮水机中原有水的温度为20℃后即外出散步,预计上午八点半散步回到家中,回到家时,他能喝到饮水机内不低于30℃的水吗?请说明你的理由.25.(10分)如图,反比例函数y=的图象与直线y=x+m在第一象限交于点P(6,2),A、B为直线上的两点,点A的横坐标为2,点B的横坐标为1.D、C为反比例函数图象上的两点,且AD、BC平行于y轴.(1)求反比例函数y=与直线y=x+m的函数关系式(2)求梯形ABCD的面积.26.(10分)如图,点在轴正半轴上,点是反比例函数图象上的一点,且.过点作轴交反比例函数图象于点.(1)求反比例函数的表达式;(2)求点的坐标.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形进行解答.【详解】第一、二、三个图形是中心对称图形,第四个图形是轴对称图形,不是中心对称图形.综上所述,是中心对称图形的有3个.故答案选B.【点睛】本题考查了中心对称图形,解题的关键是熟练的掌握中心对称图形的定义.2、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.3、B【分析】根据一元二次方程的定义,二次项系数不能等于0,未知数最高次数是2的整式方程,即可得到答案.【详解】解:A、不是整式方程,故本项错误;B、化简得到,是一元二次方程,故本项正确;C、化简得到,是一元一次方程,故本项错误;D、是二元一次方程,故本项错误;故选择:B.【点睛】本题考查了一元二次方程的定义,熟记定义是解题的关键.4、C【分析】根据图象可直接判断a、c的符号,再结合对称轴的位置可判断b的符号,进而可判断①;抛物线的图象过点(3,0),代入抛物线的解析式可判断②;根据抛物线顶点的位置可知:顶点的纵坐标小于-2,整理后可判断③;根据图象可知顶点的横坐标大于1,整理后再结合③的结论即可判断④.【详解】解:①由图象可知:,,由于对称轴,∴,∴,故①正确;②∵抛物线过,∴时,,故②正确;③顶点坐标为:.由图象可知:,∵,∴,即,故③错误;④由图象可知:,,∴,∵,∴,∴,故④正确;故选:C.【点睛】本题考查了抛物线的图象与性质和抛物线的图象与其系数的关系,熟练掌握抛物线的图象与性质、灵活运用数形结合的思想方法是解题的关键.5、B【分析】根据勾股定理求出AB,根据余弦的定义计算即可.【详解】由勾股定理得,,则,故选:B.【点睛】本题考查的是锐角三角函数的定义,掌握锐角A的邻边b与斜边c的比叫做∠A的余弦是解题的关键.6、B【解析】根据比例式的性质,即可得到答案.【详解】∵⇔,⇔,⇔,⇔,∴变形错误的是选项B.故选B.【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.7、A【分析】由二次函数的增减性可求得对称轴,可求得a取值范围,再求分式方程的解,进行求解即可.【详解】解:

∵y=-x2+(a-2)x+3,

∴抛物线对称轴为x=,开口向下,

∵当x>2时y随着x的增大而减小,

∴≤2,解得a≤6,

解关于x的分式方程可得x=,且x≠3,则a≠5,

∵分式方程的解是自然数,

∴a+1是2的倍数的自然数,且a≠5,

∴符合条件的整数a为:-1、1、3,

∴符合条件的整数a的和为:-1+1+3=3,

故选:A.【点睛】此题考查二次函数的性质,由二次函数的性质求得a的取值范围是解题的关键.8、B【分析】根据反比例函数的系数为5>0,在每一个象限内,y随x的增大而减小的性质进行判断即可.【详解】∵5>0,∴图形位于一、三象限,在每一个象限内,y随x的增大而减小,又∵0<x1<x2,∴0<y2<y1,故选:B.【点睛】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.9、A【解析】将m代入关于x的一元二次方程x2+nx+m=0,通过解该方程即可求得m+n的值.【详解】解:∵m是关于x的一元二次方程x2+nx+m=0的根,

∴m2+nm+m=0,

∴m(m+n+1)=0;

又∵m≠0,

∴m+n+1=0,

解得m+n=-1;

故选:A.【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax2+bx+c=0(a≠0)的解一定满足该一元二次方程的关系式.10、C【解析】直接利用二次根式的定义即可得出答案.【详解】∵式子在实数范围内有意义,∴x的取值范围是:x>1.故选:C.【点睛】本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键.二、填空题(每小题3分,共24分)11、【分析】根据弧长的公式列式计算即可.【详解】∵一个扇形的半径长为3,且圆心角为60°,

∴此扇形的弧长为=π.

故答案为:π.【点睛】此题考查弧长公式,熟记公式是解题关键.12、【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】解:如图,∵∠ACB=90°,AC=BC=,∴AB==,∴S扇形ABD==,又∴Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故答案是:.【点睛】本题考查了扇形的面积公式:S=,也考查了勾股定理以及旋转的性质.13、【解析】∵,根据和比性质,得==,故答案为.14、1【分析】利用平行线分线段长比例定理得到=1,即AF=FD,所以EF为△ADC的中位线,则EF=CD=BD,再利用EF∥BD得到,所以DG=2FG=2,然后计算FD,从而得到AD的长.【详解】解:∵△ABC的两条中线AD,BE交于点G,∴BD=CD,AE=CE,∵EF∥CD,∴=1,即AF=FD,∴EF为△ADC的中位线,∴EF=CD,∴EF=BD,∵EF∥BD,∴,∴DG=2FG=2,∴FD=2+1=3,∴AD=2FD=1.故答案为:1.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.也考查了三角形中位线性质和平行线分线段成比例定理.15、1【分析】根据=1,得出x=1y,再代入要求的式子进行计算即可.【详解】∵=1,∴x=1y,∴;故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x=1y.16、【分析】根据合比定理即可得答案.【详解】∵,∴,∴=,故答案为:【点睛】本题考查合比定理,如果,那么;熟练掌握合比定理是解题关键.17、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值.【详解】∵,设方程的两个解为则,∵两实根的平方和为,即=∴解得:k=3或k=-11∵当k=-11时,一元二次方程的△<0,不符,需要舍去故答案为:3【点睛】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去.18、1.【解析】试题分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,则∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直线刚好与⊙O相切于点C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考点:①解直角三角形;②切线的性质;③含30°角直角三角形的性质.三、解答题(共66分)19、(1)详见解析;(2)详见解析,A1(﹣3,3);(3)详见解析,A2(6,6).【解析】(1)根据A、B、C三点坐标画出图形即可;(2)作出A、B、C关于轴的对称点A1、B1、C1即可;(3)延长OC到C2,使得OC2=2OC,同法作出A2,B2即可;【详解】(1)△ABC如图所示;(2)△A1B1C1如图所示;A1(﹣3,3),(3)△A2B2C2如图所示;A2(6,6).故答案为(﹣3,3),(6,6).【点睛】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20、(1)证明见解析;(2)证明见解析;(3)【分析】(1)欲证明BD是⊙O的切线,只要证明BD⊥AB;

(2)连接AC,证明△FCM∽△FAC即可解决问题;

(3)连接BF,想办法求出BF,FM即可解决问题.【详解】(1)∵,

∴∠AFC=∠ABC,

又∵∠AFC=∠ODB,

∴∠ABC=∠ODB,

∵OE⊥BC,

∴∠BED=90°,

∴∠ODB+∠EBD=90°,

∴∠ABC+∠EBD=90°,

∴OB⊥BD,

∴BD是⊙O的切线;

(2)连接AC,

∵OF⊥BC,

∴,,

∴∠BCF=∠FAC,

又∵∠CFM=∠AFC,

∴△FCM∽△FAC,

∴;

(3)连接BF,

∵AB是⊙O的直径,且AB=10,

∴∠AFB=90°,∴,

∴,

∴,

∵,

∴,

∵,

∴,

∴,∴.【点睛】本题属于圆综合题,考查了圆周角定理,切线的判定,相似三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会添加常用辅助线.21、(1);(2)【分析】(1)直接利用概率公式计算得出答案;(2)直接利用树状图法得出所有符合题意情况,进而求出概率.【详解】(1)P(第一次甲将花传给丁)=;(2)如图所示:,共有9种等可能的结果,其中符合要求的结果有3种,故P(经过两次传花,花恰好回到甲手里)==.【点睛】此题主要考查了树状图法求概率,正确画出树状图是解题关键.22、.【分析】画出树状图,然后找到甲同学传给下一个同学后,这个同学再传给甲同学的结果数多即可得.【详解】由题意可画如下的树状图:由树状图可知,共有9种等可能性的结果,其中甲同学传给下一个同学后,这个同学再传给甲同学的结果有3种甲同学传给下一个同学后,这个同学再传给甲同学的概率.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)-1或2;(2)抛物线解析式为y=-x2+2x+2;(2)x>2或x<-1.【分析】(1)直接观察图象,抛物线与x轴交于-1,2两点,所以方程的解为x1=-1,x2=2.

(2)设出抛物线的顶点坐标形式,代入坐标(2,0),即可求得抛物线的解析式.

(2)若y<0,则函数的图象在x轴的下方,找到对应的自变量取值范围即可.【详解】解:(1)观察图象可看对称轴出抛物线与x轴交于x=-1和x=2两点,

∴方程的解为x1=-1,x2=2,

故答案为:-1或2;

(2)设抛物线解析式为y=-(x-1)2+k,

∵抛物线与x轴交于点(2,0),

∴(2-1)2+k=0,

解得:k=4,

∴抛物线解析式为y=-(x-1)2+4,

即:抛物线解析式为y=-x2+2x+2;

(2)抛物线与x轴的交点(-1,0),(2,0),当y<0时,则函数的图象在x轴的下方,由函数的图象可知:x>2或x<-1;【点睛】本题主要考查了二次函数与一元二次方程、不等式的关系,以及求函数解析式的方法,能从图像中得到关键信息是解决此题的关键.24、(1)y=10x+1;(2)t的值为2;(3)不能,理由见解析【分析】(1)根据一次函数图象上两点的坐标,利用待定系数法即可求出当0≤x≤8时,水温y(℃)与开机时间x(分)的函数关系式;(2)由点(8,100),利用待定系数法即可求出当8≤x≤t时,水温y(℃)与开机时间x(分)的函数关系式,再将y=1代入该函数关系式中求出x值即可;(3)将x=30代入反比例函数关系式中求出y值,再与30比较后即可得出结论.【详解】(1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系式为y=kx+b(k≠0).将(0,1)、(8,100)代入y=kx+b中,得:,解得:,∴当0≤x≤8时,水温y(℃)与开机时间x(分)的函数关系式为y=10x+1.(2)当8≤x≤t时,设水温y(℃)与开机时间x(分)的函数关系式为y(m≠0),将(8,100)代入y中,得:100,解得:m=800,∴当8≤x≤t时,水温y(℃)与开机时间x(分)的函数关系式为y.当y1时,x=2,∴图中t的值为2.(3)当x=30时,.答:小明上午八点半散步回到家中时,不能喝到饮水机内不低于30°C的水.【点睛】本题考查了一次函数的应用、待定系数法求一次(反比例)函数解析式以及一次(反比例)函数图象上点的坐标特征,解答本题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数关系式;(2)根据点的坐标,利用待定系数法求出反比例函数关系式;(3)将x=30代入反比例函数关系式中,求出y值.25、(1)y=,y=x-4(2)s=6.5【解析】考点:反比例函数综合题.分析:(1)由于反比例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论