版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,已知AB∥CD∥EF,AC=4,CE=1,BD=3,则DF的值为()A. B. C. D.12.如图所示,△的顶点是正方形网格的格点,则的值是()A. B. C. D.3.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:14.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3) B.(﹣2,3) C.(2,﹣3) D.(﹣2,﹣3)5.矩形、菱形、正方形都一定具有的性质是()A.邻边相等 B.四个角都是直角C.对角线相等 D.对角线互相平分6.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.27.方程的根的情况()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.有两个实数根8.如图,点,,均在坐标轴上,,过,,作,是上任意一点,连结,,则的最大值是()A.4 B.5 C.6 D.9.如图,是的直径,是的弦,已知,则的度数为()A. B. C. D.10.如图,AB是⊙O的直径,弦CD⊥AB于点E,且E为OB的中点,∠CDB=30°,CD=4,则阴影部分的面积为()A.π B.4π C.π D.π二、填空题(每小题3分,共24分)11.反比例函数的图象具有下列特征:在所在象限内,的值随值增大而减小.那么的取值范围是_____________.12.一个不透明的布袋里装有100个只有颜色不同的球,这100个球中有m个红球通过大量重复试验后发现,从布袋中随机摸出一个球摸到红球的频率稳定在左右,则m的值约为______.13.若关于的一元二次方程有实数根,则的取值范围是_______.14.如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.15.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A=°.16.函数y=﹣(x﹣1)2+1(x≥3)的最大值是_____.17.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.18.当时,二次函数有最大值4,则实数的值为________.三、解答题(共66分)19.(10分)解方程:x2-4x-7=0.20.(6分)已知是上一点,.(Ⅰ)如图①,过点作的切线,与的延长线交于点,求的大小及的长;(Ⅱ)如图②,为上一点,延长线与交于点,若,求的大小及的长.21.(6分)将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).22.(8分)如图是一根钢管的直观图,画出它的三视图.23.(8分)某校垃圾分类“督察部”从4名学生会干部(2男2女)随机选取2名学生会干部进行督查,请用枚举、列表或画树状图的方法求出恰好选中两名男生的概率.24.(8分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.25.(10分)“垃圾分类”越来越受到人们的关注,我市某中学对部分学生就“垃圾分类”知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有人,条形统计图中的值为;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为;(3)若从对垃圾分类知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加垃圾分类知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.26.(10分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.(1)求证:DP是⊙O的切线;(2)若⊙O的半径为3cm,求图中阴影部分的面积.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据平行线分线段成比例定理即可得出结论.【详解】解:∵直线AB∥CD∥EF,AC=4,CE=1,BD=3,∴即,解得DF=.
故选:C.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.2、B【分析】过点C作CD⊥AB,利用间接法求出△ABC的面积,利用勾股定理求出AB、BC的长度,然后求出CD的长度,即可得到∠B的度数,然后得到答案.【详解】解:如图,过点C作CD⊥AB,∴,∵,,又∵,∴,在Rt△BCD中,,∴,∴;故选:B.【点睛】本题考查了特殊角的三角函数值,勾股定理与网格问题,解题的关键是作出辅助线正确构造直角三角形,利用三角函数值进行求解.3、B【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【详解】∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE:S△BFA=9:1.故选B.4、A【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.5、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.6、C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.7、B【分析】根据方程的系数结合根的判别式,可得出△=−7<0,进而可得出该方程没有实数根.【详解】a=2,b=-3,c=2,∵△=b2−4ac=9−4×2×2=−7<0,∴关于x的一元二次方程没有实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.8、C【分析】连接,,如图,利用圆周角定理可判定点在上,易得,,,,,设,则,由于表示点到原点的距离,则当为直径时,点到原点的距离最大,由于为平分,则,利用点在圆上得到,则可计算出,从而得到的最大值.【详解】解:连接,,如图,,为的直径,点在上,,,,,,,设,,而表示点到原点的距离,当为直径时,点到原点的距离最大,为平分,,,,即,此时,即的最大值是1.故选:.【点睛】本题考查了点与圆的位置关系、圆周角定理、勾股定理等,作出辅助线,得到是解题的关键.9、C【分析】根据圆周角定理即可解决问题.【详解】∵,∴.故选:C.【点睛】本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.10、D【分析】根据圆周角定理求出∠COB,进而求出∠AOC,再利用垂径定理以及锐角三角函数关系得出OC的长,再结合扇形面积求出答案.【详解】解:∵,∴,∴,∵,,∴,,∴,∴阴影部分的面积为,
故选:D.【点睛】本题考查了圆周角定理,垂径定理,解直角三角形,扇形面积公式等知识点,能求出线段OC的长和∠AOC的度数是解此题的关键.二、填空题(每小题3分,共24分)11、【分析】直接利用当k>1,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<1,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案.【详解】解:∵反比例函数的图象在所在象限内,y的值随x值的增大而减小,
∴k>1.
故答案为:k>1.【点睛】此题主要考查了反比例函数的性质,掌握基本性质是解题的关键.12、1【解析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意,得:,解得:,故答案为:1.【点睛】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率所求情况数与总情况数之比.13、【分析】对于一元二次方程,当时有实数根,由此可得m的取值范围.【详解】解:由题意可得,解得.故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式是解题的关键.14、(2,6)【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,∴在Rt△CMF中,∴点C的坐标为(2,6).故答案为(2,6).【点睛】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.15、55.【详解】试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.16、-1【分析】根据函数图象自变量取值范围得出对应y的值,即是函数的最值.【详解】解:∵函数y=-(x-1)2+1,∴对称轴为直线x=1,当x>1时,y随x的增大而减小,∵当x=1时,y=-1,∴函数y=-(x-1)2+1(x≥1)的最大值是-1.故答案为-1.【点睛】此题考查的是求二次函数的最值,掌握二次函数对称轴两侧的增减性是解决此题的关键.17、a<2且a≠1.【分析】利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.【详解】试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.18、2或【分析】求出二次函数对称轴为直线x=m,再分m<-2,-2≤m≤1,m>1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m,且开口向下,
①m<-2时,x=-2取得最大值,-(-2-m)2+m2+1=4,
解得,,∴不符合题意,
②-2≤m≤1时,x=m取得最大值,m2+1=4,
解得,所以,③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,
解得m=2,
综上所述,m=2或时,二次函数有最大值.
故答案为:2或.【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.三、解答题(共66分)19、【解析】x²-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)²-4×1×(-7)=44>0,∴x=,∴.20、(Ⅰ),PA=4;(Ⅱ),【分析】(Ⅰ)易得△OAC是等边三角形即∠AOC=60°,又由PC是○O的切线故PC⊥OC,即∠OCP=90°可得∠P的度数,由OC=4可得PA的长度(Ⅱ)由(Ⅰ)知△OAC是等边三角形,易得∠APC=45°;过点C作CD⊥AB于点D,易得AD=AO=CO,在Rt△DOC中易得CD的长,即可求解【详解】解:(Ⅰ)∵AB是○O的直径,∴OA是○O的半径.∵∠OAC=60°,OA=OC,∴△OAC是等边三角形.∴∠AOC=60°.∵PC是○O的切线,OC为○O的半径,∴PC⊥OC,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°.∴∠APC=∠AQC+∠QAO=45°.如图②,过点C作CD⊥AB于点D.∵△OAC是等边三角形,CD⊥AB于点D,∴∠DCO=30°,AD=AO=CO=2.∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt△DOC中,OC=4,∠DCO=30°,∴OD=2,∴CD=2∴PD=CD=2∴AP=AD+DP=2+2【点睛】此题主要考查圆的综合应用21、(1);(2).【解析】(1)直接利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中找打2次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.【详解】解:(1)搅匀后从中摸出1个盒子有3种等可能结果,所以摸出的盒子中是型矩形纸片的概率为;(2)画树状图如下:由树状图知共有6种等可能结果,其中2次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以2次摸出的盒子的纸片能拼成一个新矩形的概率为.【点睛】考查了列表法或树状图法求概率.用到的知识点为:概率所求情况数与总情况数之比.22、答案见解析【解析】试题分析:根据三视图的画法得出答案.试题解析:如图考点:三视图23、.【分析】用列表法或树状图法列举出所有等可能出现的情况,从中找出符合条件的情况数,进而求出概率.【详解】用列表法得出所有可能出现的情况如下:共有12种等可能的情况,其中两人都是男生的有2种,∴P(两人都是男生)==.【点睛】本题考查求概率,熟练掌握列表法或树状图法是解题的关键.24、(1)见解析;(2)【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;
(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=OC=4,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:
∵AB是⊙O的直径,
∴∠ACB=90°,即∠ACO+∠BCO=90°,
∵CA=CD,BC=BD,
∴∠A=∠D=∠BCD,
又∵OA=OC,
∴∠ACO=∠A,
∴∠ACO=∠BCD,
∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,
∴CD⊥OC,
∵OC是⊙O的半径,
∴CD与⊙O相切;
(2)解:∵AB=8,
∴OC=OB=4,
由(1)得:∠A=∠D=∠BCD,
∴∠OBC=∠BCD+∠D=2∠D,
∵∠BOC=2∠A,
∴∠BOC=∠OBC,
∴OC=BC,
∵OB=OC,
∴OB=OC=BC,
∴∠BOC=60°,
∵∠OCD=90°,
∴∠D=90°-60°=30°,
∴CD=OC=4,
∴图中阴影部分的面积=△OCD的面积-扇形OBC的面积=×
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 同步课堂课件
- 《食品的污染及预防》课件
- 高考语文专题复习课件:文言文词类活用
- 2024年度企业间金融服务与风险管理合同
- 2024中国石油集团济柴动力限公司长庆压缩机维修服务分公司招聘(内蒙古)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国电信浙江公司社会招聘179易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度网站建设及运营合同
- 2024中国医药健康产业股份限公司招聘易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国中煤能源集团限公司平朔工业集团高校毕业生招聘30人易考易错模拟试题(共500题)试卷后附参考答案
- 2024下半年贵州六盘水市事业单位及国企业招聘应征入伍大学毕业生164人易考易错模拟试题(共500题)试卷后附参考答案
- 小学体育课学生学情分析报告
- 2024年辐射防护培训试题
- 《研学旅行课程设计》课件-研学课程方案设计
- 苏科版初中生物试讲演课面试
- SYT 5037-2012 普通流体输送管道用埋弧焊钢管
- 体育教学弯道跑教案
- 建筑施工高处作业安全技术规范JGJ80-201620200805
- 自考环境与资源保护法学复习重点
- 五十六个民族是一家主题班会
- 社会单位消防安全风险自查评估报告表模板
- 2024患者十大安全目标
评论
0/150
提交评论