![内蒙古巴彦淖尔市杭锦后旗2022年数学九年级第一学期期末调研模拟试题含解析_第1页](http://file4.renrendoc.com/view/8f425cb57c9f1502b84bc3080ef63456/8f425cb57c9f1502b84bc3080ef634561.gif)
![内蒙古巴彦淖尔市杭锦后旗2022年数学九年级第一学期期末调研模拟试题含解析_第2页](http://file4.renrendoc.com/view/8f425cb57c9f1502b84bc3080ef63456/8f425cb57c9f1502b84bc3080ef634562.gif)
![内蒙古巴彦淖尔市杭锦后旗2022年数学九年级第一学期期末调研模拟试题含解析_第3页](http://file4.renrendoc.com/view/8f425cb57c9f1502b84bc3080ef63456/8f425cb57c9f1502b84bc3080ef634563.gif)
![内蒙古巴彦淖尔市杭锦后旗2022年数学九年级第一学期期末调研模拟试题含解析_第4页](http://file4.renrendoc.com/view/8f425cb57c9f1502b84bc3080ef63456/8f425cb57c9f1502b84bc3080ef634564.gif)
![内蒙古巴彦淖尔市杭锦后旗2022年数学九年级第一学期期末调研模拟试题含解析_第5页](http://file4.renrendoc.com/view/8f425cb57c9f1502b84bc3080ef63456/8f425cb57c9f1502b84bc3080ef634565.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是()A.①②③ B.①③④ C.①③⑤ D.②④⑤2.已知反比例函数的表达式为,它的图象在各自象限内具有y随x的增大而增大的特点,则k的取值范围是().A.k>-2 B. C. D.3.正六边形的周长为6,则它的面积为()A. B. C. D.4.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是A.50(1+x2)=196 B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=1965.如图,将绕点逆时针旋转得到,则下列说法中,不正确的是()A. B. C. D.6.点P(-6,1)在双曲线上,则k的值为()A.-6 B.6 C. D.7.已知:如图,矩形ABCD中,AB=2cm,AD=3cm.点P和点Q同时从点A出发,点P以3cm/s的速度沿A→D方向运动到点D为止,点Q以2cm/s的速度沿A→B→C→D方向运动到点D为止,则△APQ的面积S(cm2)与运动时间t(s)之间函数关系的大致图象是()A. B.C. D.8.的值等于()A. B. C. D.9.如图,在中,,,平分,是的中点,若,则的长为()A.4 B. C. D.10.如图,A、B、C、D是⊙O上的四点,BD为⊙O的直径,若四边形ABCO是平行四边形,则∠ADB的大小为()A.30° B.45° C.60° D.75°11.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172,方差为,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172,此时全班同学身高的方差为,那么与的大小关系是()A. B. C. D.无法判断12.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同.若随机从中摸出一个,摸到红球的概率是,则袋中球的总个数是()A.2 B.4 C.6 D.8二、填空题(每题4分,共24分)13.计算:cos45°=________________14.如图,已知等边,顶点在双曲线上,点的坐标为(2,0).过作,交双曲线于点,过作交轴于,得到第二个等边.过作交双曲线于点,过作交轴于点得到第三个等边;以此类推,…,则点的坐标为______,的坐标为______.15.若反比例函数的图像上有两点,,则____.(填“>”或“=”或“<”)16.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为__.17.如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_________.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.18.一个不透明的盒子中有4个白球,3个黑球,2个红球,各球的大小与质地都相同,现随机从盒子中摸出一个球,摸到白球的概率是_____.三、解答题(共78分)19.(8分)如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留π)20.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?21.(8分)化简分式,并从﹣1≤x≤3中选一个你认为合适的整数x代入求值.22.(10分)如图,的内接四边形两组对边的延长线分别相交于点、.(1)若时,求证:;(2)若时,求的度数.23.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).(1)请在图中画出△ABC关于y轴对称的图形△A1B1C1:(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴的左侧画出△A2B2C2,并求出△A2B2C2的面积.24.(10分)如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成.(1)若围成的面积为180m2,试求出自行车车棚的长和宽;(2)能围成面积为200m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.25.(12分)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,证明:DE=DF(2)如图2,将∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.DE=DF仍然成立吗?说明理由.(3)如图3,将∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,DE=DF仍然成立吗?说明理由.26.如图,矩形的两边的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值;(2)若,求反比例函数的表达式.
参考答案一、选择题(每题4分,共48分)1、C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-=1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a<0,∴b=-2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(-2,0),所以④错误;∵抛物线y1=ax2+bx+c与直线y2=mx+n(m≠0)交于A(1,3),B点(4,0)∴当1<x<4时,y2<y1,所以⑤正确.故选C.考点:1.二次函数图象与系数的关系;2.抛物线与x轴的交点.2、C【分析】先根据反比例数的图象在每一象限内y随x的增大而增大得出关于k的不等式,求出k的取值范围即可.【详解】解:∵反比例数的图象在每一象限内y随x的增大而增大,
∴<0,解得k<-1.
故选:C.【点睛】本题考查的是反比例函数的性质,熟知反比例函数(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键3、B【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为6,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【详解】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为6,∴BC=6÷6=1,∴OB=BC=1,∴BM=BC=,∴OM=,∴S△OBC=×BC×OM=,∴该六边形的面积为:.故选:B.【点睛】此题考查了圆的内接六边形的性质与等边三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.4、C【详解】试题分析:一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量:八、九月份的产量分别为50(1+x)、50(1+x)2,从而根据题意得出方程:50+50(1+x)+50(1+x)2=1.故选C.5、A【分析】由旋转的性质可得△ABC≌△AB'C',∠BAB'=∠CAC'=60°,AB=AB',即可分析求解.【详解】∵将△ABC绕点A逆时针旋转60°得到△AB′C′,∴△ABC≌△AB'C',∠BAB'=∠CAC'=60°,∴AB=AB',∠CAB'<∠BAB'=60°,故选:A.【点睛】本题考查了旋转的性质,全等三角形的性质,熟练运用旋转的性质是关键.6、A【分析】根据反比例函数图象上点的坐标特征可直接得到答案.【详解】解:∵点P()在双曲线上,∴;故选:A.【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7、C【分析】研究两个动点到矩形各顶点时的时间,分段讨论求出函数解析式即可求解.【详解】解:分三种情况讨论:(1)当0≤t≤1时,点P在AD边上,点Q在AB边上,∴S=,∴此时抛物线经过坐标原点并且开口向上;(1)当1<t≤1.5时,点P与点D重合,点Q在BC边上,∴S==2,∴此时,函数值不变,函数图象为平行于t轴的线段;(2)当1.5<t≤2.5时,点P与点D重合,点Q在CD边上,∴S=×2×(7﹣1t))=﹣t+.∴函数图象是一条线段且S随t的增大而减小.故选:C.【点睛】本题考查了二次函数与几何问题,用分类讨论的数学思想解题是关键,解答时注意研究动点到达临界点时的时间以此作为分段的标准,逐一分析求解.8、A【分析】根据特殊角的三角函数值解题即可.【详解】解:cos60°=.故选A.【点睛】本题考查了特殊角的三角函数值.9、B【分析】首先证明,然后再根据在直角三角形中,斜边上的中线等于斜边的一半,即.【详解】解:设则,在中,即解得为中点,故选B【点睛】本题主要考查了角平分线的性质、直角三角形斜边上的中线,含30度角的直角三角形.10、A【解析】解:∵四边形ABCO是平行四边形,且OA=OC,∴四边形ABCO是菱形,∴AB=OA=OB,∴△OAB是等边三角形,∴∠AOB=60°,∵BD是⊙O的直径,∴点B、D、O在同一直线上,∴∠ADB=∠AOB=30°故选A.11、B【分析】设该班的人数有n人,除小明外,其他人的身高为x1,x2……xn-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm,然后根据方差公式比较大小即可.【详解】解:设该班的人数有n人,除小明外,其他人的身高为x1,x2……xn-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm根据方差公式:∵∴即故选B.【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.12、D【解析】试题解析:袋中球的总个数是:2÷=8(个).故选D.二、填空题(每题4分,共24分)13、1【分析】将cos45°=代入进行计算即可.【详解】解:cos45°=故答案为:1.【点睛】此题考查的是特殊角的锐角三角函数值,掌握cos45°=是解决此题的关键.14、(2,0),(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点Bn的坐标.【详解】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,
OC=OB1+B1C=2+a,A2(2+a,a).
∵点A2在双曲线上,
∴(2+a)•a=,
解得a=-1,或a=--1(舍去),
∴OB2=OB1+2B1C=2+2-2=2,
∴点B2的坐标为(2,0);
作A3D⊥x轴于点D,设B2D=b,则A3D=b,
OD=OB2+B2D=2+b,A2(2+b,b).
∵点A3在双曲线y=(x>0)上,
∴(2+b)•b=,
解得b=-+,或b=--(舍去),
∴OB3=OB2+2B2D=2-2+2=2,
∴点B3的坐标为(2,0);
同理可得点B4的坐标为(2,0)即(4,0);
以此类推…,
∴点Bn的坐标为(2,0),
故答案为(2,0),(2,0).【点睛】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点Bn的规律是解题的关键.15、<【分析】先把A(,2),B(,-1)代入反比例函数,求出的值并比较出其大小即可.【详解】∵点A(,2),B(,-1)是反比例函数图像上的点,∴,,∵,∴,故答案为:.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.16、【解析】试题解析:如图:连接OA交BC于D,连接OC,是等边三角形,是外心,故答案为17、【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线M'A'的解析式,从而求得点P′的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.【详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,利用二次函数的知识解决生活中的实际问题.18、.【分析】直接利用概率求法,白球数量除以总数进而得出答案.【详解】∵一个不透明的盒子中有4个白球,3个黑球,2个红球,∴随机从盒子中摸出一个球,摸到白球的概率是:.故答案为:.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.三、解答题(共78分)19、(1)图见解析,(-3,6);(2)图见解析,【分析】(1)根据△ABC向上平移3个单位,得出对应点位置,即可得出A1的坐标;(2)得出旋转后的△A2B2C2,再利用弧长公式求出点B所经过的路径长.【详解】解:(1)如图所示:A1的坐标为:(-3,6);(2)如图所示:∵BO=,∴点B所经过的路径长=.20、(1)8;(2).【分析】找出临界点即可.【详解】(1)8;∵点在双曲线上,
∴,
∴解得:.
当时,,
所以当时,大棚内的温度约为.【点睛】理解临界点的含义是解题的关键.21、;x=2时,原式=.【解析】先将括号内的分式通分,再按照分式的除法法则,将除法转化为乘法进行计算.最后在﹣1≤x≤3中取一个使分式分母和除式不为1的数代入求值.【详解】解:原式=.∵﹣1≤x≤3的整数有-1,1,1,2,3,当x=﹣1或x=1时,分式的分母为1,当x=1时,除式为1,∴取x的值时,不可取x=﹣1或x=1或x=1.不妨取x=2,此时原式=.22、(1)证明见解析;(2)48°.【分析】(1)根据对顶角与三角形的外角定理即可求解;(2)根据圆内接四边形得到,再根据三角形的内角和及外角定理即可求解.【详解】,,,;(2),,.,且,,,.【点睛】此题主要考查圆内的角度求解,解题的关键是熟知三角形的内角和及圆内接四边形的性质.23、(1)详见解析;(2)图详见解析,.【分析】(1)利用关于y轴的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)把A、B、C点的横纵坐标都乘以得到A2、B2、C2的坐标,再描点得到△A2B2C2,然后计算△ABC的面积,再把△ABC的面积乘以得到△A2B2C2的面积.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作,△ABC的面积=3×5﹣×2×3﹣×1×5﹣×2×3=,所以△A2B2C2的面积=×=【点睛】本题考查了作图−轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.24、(1)长和宽分别为18m,10m;(2)不能,理由见解析【分析】(1)利用长方形的周长表示出各边长,即可表示出矩形面积,求出即可;(2)利用长方形的面积列方程,利用根的判别式解答即可.【详解】解:(1)设AB=x,则BC=38-2x.根据题意,得x(38-2x)=180,解得x1=10,x2=9.当x=10时,38-2x=18;当x=9时,38-2x=20>19,不符合题意,舍去.答:若围成的面积为180m2,自行车车棚的长和宽分别为18m,10m.(2)不能,理由如下:根据题意,得x(38-2x)=200,整理,得x2-19x+100=0.∵Δ=b2-4ac=361-400=-39<0,∴此方程没有实数根.∴不能围成面积为200m2的自行车车棚.【点睛】本题考查一元二次方程的应用,熟练掌握计算法则是解题关键.25、(1)见解析;(2)结论仍然成立.,DE=DF,见解析;(3)仍然成立,DE=DF,见解析【分析】(1)由题意根据全等三角形的性质与判定,结合等边三角形性质证明△BED≌△CFD(ASA),即可证得DE=DF;(2)根据题意先取AC中点G,连接DG,继而再全等三角形的性质与判定,结合等边三角形性质证明△EDG≌△FDC(ASA),进而证得DE=DF;(3)由题意过点D作DN⊥AC于N,DM⊥AB于M,继而再全等三角形的性质与判定,结合等边三角形性质证明△DME≌△DNF(ASA),即可证得DE=DF.【详解】解:(1)∵A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班级自我管理提升计划
- 急诊安全文化建设实践计划
- 实验室安全规范与培训计划
- 学校教学活动安排计划
- 秘书在团队沟通中的角色计划
- 小班三维课程与教育理念实践计划
- 2025年美司那项目建议书
- 2025年中国异构计算行业市场运行态势及发展趋势预测报告-智研咨询发布
- 2025年多通道脑电图机项目建议书
- 淮安市2024-2025学年上学期高一期末考试地理试题(含答案)
- DB32-T 3129-2016适合机械化作业的单体钢架塑料大棚 技术规范-(高清现行)
- 《花婆婆》儿童绘本故事
- DB44∕T 2149-2018 森林资源规划设计调查技术规程
- 数据结构英文教学课件:chapter10 Hashing
- 蓝色卡通风学生班干部竞选介绍PPT模板课件
- 人教新目标英语九年级上册单词中文Units
- 机动车牌证申请表格模板(完整版)
- 《国家电网公司十八项电网反事故措施(试行)》实施细则
- 钢丝网架珍珠岩夹心板安装方法
- 工艺管廊架施工方案
- 六宫格数独解题技巧
评论
0/150
提交评论