




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,如图是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的两根分别为﹣3和1;④b2﹣4ac>0,其中正确的命题有()A.1个 B.2个 C.3个 D.4个2.如图,是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作轴分别交这两个图象与点A和点B,P和Q在x轴上,且四边形ABPQ为平行四边形,则四边形ABPQ的面积等于()A.20 B.15 C.10 D.53.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个 B.1080个 C.1260个 D.1800个4.如图,在菱形ABCD中,∠BAD=120°,AB=2,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A. B. C.2 D.5.下列图形中是中心对称图形的有()个.A.1 B.2 C.3 D.46.方程的根是()A. B.C. D.7.我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟 B.70分钟 C.80分钟 D.90分钟8.点P(6,-8)关于原点的对称点的坐标为()A.(-6,8) B.(–6,-8) C.(8,-6) D.(–8,-6)9.如图,太阳在房子的后方,那么你站在房子的正前方看到的影子为()A.B.C.D.10.下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.二、填空题(每小题3分,共24分)11.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.12.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A’处,折痕为PQ,当点A’在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A’在BC边上可移动的最大距离为.13.如图,在四边形中,,,则的度数为______.14.抛物线y=x2﹣4x+3的顶点坐标为_____.15.如图,AB为半圆的直径,点D在半圆弧上,过点D作AB的平行线与过点A半圆的切线交于点C,点E在AB上,若DE垂直平分BC,则=______.16.如图,折叠长方形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,则EF=________.17.已知,且,且与的周长和为175,则的周长为_________.18.从某玉米种子中抽取6批,在同一条件下进行发芽试验,有关数据如下:种子粒数100400800100020005000发芽种子粒数8529865279316044005发芽频率0.8500.7450.8150.7930.8020.801根据以上数据可以估计,该玉米种子发芽的概率约为___(精确到0.1).三、解答题(共66分)19.(10分)如图①,在中,,,D是BC的中点.小明对图①进行了如下探究:在线段AD上任取一点P,连接PB,将线段PB绕点P按逆时针方向旋转,点B的对应点是点E,连接BE,得到.小明发现,随着点P在线段AD上位置的变化,点E的位置也在变化,点E可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)当点E在直线AD上时,如图②所示.①;②连接CE,直线CE与直线AB的位置关系是.(2)请在图③中画出,使点E在直线AD的右侧,连接CE,试判断直线CE与直线AB的位置关系,并说明理由.(3)当点P在线段AD上运动时,求AE的最小值.20.(6分)阅读材料:求解一元一次方程,需要根据等式的基本性质,把方程转化为的形式;求解二元一次方程组,需要通过消元把它转化为一元一次方程来解;求解三元一次方程组,要把它转化为二元一次方程组来解;求解一元二次方程,需要把它转化为连个一元一次方程来解;求解分式方程,需要通过去分母把它转化为整式方程来解;各类方程的解法不尽相同,但是它们都用到一种共同的基本数学思想——转化,即把未知转化为已知来求解.用“转化”的数学思想,我们还可以解一些新的方程.例如,解一元三次方程,通过因式分解把它转化为,通过解方程和,可得原方程的解.再例如,解根号下含有来知数的方程:,通过两边同时平方把它转化为,解得:.因为,且,所以不是原方程的根,是原方程的解.(1)问题:方程的解是,__________,__________;(2)拓展:求方程的解.21.(6分)若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:,.我们把它们称为根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:AB=====请你参考以上定理和结论,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.(1)当△ABC为等腰直角三角形时,直接写出b2-4ac的值;(2)当△ABC为等腰三角形,且∠ACB=120°时,直接写出b2-4ac的值;(3)设抛物线y=x2+mx+5与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=120°.22.(8分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.23.(8分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.24.(8分)如图,四边形ABCD是⊙O的内接四边形,,AC为直径,DE⊥BC,垂足为E.(1)求证:CD平分∠ACE;(2)若AC=9,CE=3,求CD的长.25.(10分)某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162﹣3x.(1)请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.(2)商场每天销售这种商品的销售利润能否达到500元?如果能,求出此时的销售价格;如果不能,说明理由.26.(10分)如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象分别交于点P,Q.(1)求P点的坐标;(2)若△POQ的面积为9,求k的值.
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x=﹣1,且过点(1,0),根据对称轴可得抛物线与x轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x=﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x=﹣1,过(1,0)点,把(1,0)代入y=ax2+bx+c得,a+b+c=0,因此①正确;对称轴为直线x=﹣1,即:﹣=﹣1,整理得,b=2a,因此②不正确;由抛物线的对称性,可知抛物线与x轴的两个交点为(1,0)(﹣3,0),因此方程ax2+bx+c=0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b2﹣4ac>0,故④正确;故选C.【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x轴,y轴的交点,以及增减性上寻找其性质.2、C【解析】分别过A、B作AD、BE垂直x轴,易证,则平行四边形ABPQ的面积等于矩形ADEB的面积,根据反比例函数比例系数k的几何意义分别求得矩形ADOC和矩形BEOC的面积,相加即可求得结果.【详解】解:如图,分别过A、B作AD、BE垂直x轴于点D、点E,则四边形ADEB是矩形,易证,∴S矩形ABED,∵点A在反比例函数上,由反比例函数比例系数k的几何意义可得:S矩形ADOC=|k|=3,同理可得:S矩形BEOC=7,∴S矩形ABED=S矩形ADOC+S矩形BEOC=3+7=10,故选:C.【点睛】本题考查了反比例函数比例系数k的几何意义,熟练运用比例系数k的几何意义是解决本题的关键.3、C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【详解】估计本周全班同学各家总共丢弃塑料袋的数量为(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.4、B【分析】如图,根据圆周角定理可得点F在以BC为直径的圆上,根据菱形的性质可得∠BCM=60°,根据圆周角定理可得∠BOM=120°,利用弧长公式即可得答案.【详解】如图,取的中点,中点M,连接OM,BM,∵四边形是菱形,∴BM⊥AC,∴当点与重合时,点与中点重合,∵,∴点的运动轨迹是以为直径的圆弧,∵四边形是菱形,,∴,∴,∴的长.故选:B.【点睛】本题考查菱形的性质、圆周角定理、弧长公式及轨迹,根据圆周角定理确定出点F的轨迹并熟练掌握弧长公式是解题关键.5、B【解析】∵正三角形是轴对称能图形;平行四边形是中心对称图形;正五边形是轴对称图形;正六边形既是中心对称图形又是轴对称图形,∴中心对称图形的有2个.故选B.6、A【分析】利用直接开平方法进行求解即可得答案.【详解】,x-1=0,∴x1=x2=1,故选A.【点睛】本题考查解一元二次方程,根据方程的特点选择恰当的方法是解题的关键.7、C【分析】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.想办法求出AQ、CQ即可解决问题.【详解】解:如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=≈80(分钟),故选:C.【点睛】本题考查了解直角三角形的应用,熟练掌握并灵活运用是解题的关键.8、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接选出答案.【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8).故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反.9、C【解析】根据平行投影的性质可知烟囱的影子应该在右下方,房子左边对应的突起应该在影子的左边.10、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,是中心对称图形,故本选项不合题意;B、不是轴对称图形,是中心对称图形,故本选项不合题意;C、是轴对称图形,不是中心对称图形,故本选项不合题意;D、是轴对称图形,也是中心对称图形,故本选项符合题意;故选:D.【点睛】本题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原来的图形重合.二、填空题(每小题3分,共24分)11、1.【分析】求出方程的解,再看看是否符合三角形三边关系定理即可解答.【详解】∵x2﹣1x+14=0,∴(x﹣2)(x﹣7)=0,则x﹣2=0或x﹣7=0,解得x=2或x=7,当x=2时,三角形的周长为2+3+4=1;当x=7时,3+4=7,不能构成三角形;故答案为:1.【点睛】本题考查解一元二次方程和三角形三边关系定理的应用,解题的关键是确定三角形的第三边.12、2【解析】解:当点P与B重合时,BA′取最大值是3,当点Q与D重合时(如图),由勾股定理得A′C=4,此时BA′取最小值为1.则点A′在BC边上移动的最大距离为3-1=2.13、18°【分析】根据题意可知A、B、C、D四点共圆,由余角性质求出∠DBC的度数,再由同弧所对的圆周角相等,即为所求.【详解】解:∵在四边形中,,∴A、B、C、D四点在同一个圆上,∵∠ABC=90°,,∴∠CBD=18°,∴∠CAD=∠CBD=18°故答案为:18°【点睛】本题考查的是四点共圆、互为余角的概念和同圆中同弧所对的圆周角相等.14、(2,﹣1).【解析】先把函数解析式配成顶点式得到y=(x-2)2-1,然后根据顶点式即可得到顶点坐标.解:y=(x-2)2-1,
所以抛物线的顶点坐标为(2,-1).
故答案为(2,-1).“点睛”本题考查了二次函数的性质.二次函数的三种形式:一般式:y=ax2+bx+c,顶点式:y=(x-h)2+k;两根式:y=a(x-x1)(x-x2).15、【分析】连接CE,过点B作BH⊥CD交CD的延长线于点H,可证四边形ACHB是矩形,可得AC=BH,AB=CH,由垂直平分线的性质可得BE=CE,CD=BD,可证CE=BE=CD=DB,通过证明Rt△ACE≌Rt△HBD,可得AE=DH,通过证明△ACD∽△DHB,可得AC2=AE•BE,由勾股定理可得BE2﹣AE2=AC2,可得关于BE,AE的方程,即可求解.【详解】解:连接CE,过点B作BH⊥CD交CD的延长线于点H,∵AC是半圆的切线∴AC⊥AB,∵CD∥AB,∴AC⊥CD,且BH⊥CD,AC⊥AB,∴四边形ACHB是矩形,∴AC=BH,AB=CH,∵DE垂直平分BC,∴BE=CE,CD=BD,且DE⊥BC,∴∠BED=∠CED,∵AB∥CD,∴∠BED=∠CDE=∠CED,∴CE=CD,∴CE=BE=CD=DB,∵AC=BH,CE=BD,∴Rt△ACE≌Rt△HBD(HL)∴AE=DH,∵CE2﹣AE2=AC2,∴BE2﹣AE2=AC2,∵AB是直径,∴∠ADB=90°,∴∠ADC+∠BDH=90°,且∠ADC+∠CAD=90°,∴∠CAD=∠BDH,且∠ACD=∠BHD,∴△ACD∽△DHB,∴,∴AC2=AE•BE,∴BE2﹣AE2=AE•BE,∴BE=AE,∴故答案为:.【点睛】本题考察垂直平分线的性质、矩形的性质和相似三角形,解题关键是连接CE,过点B作BH⊥CD交CD的延长线于点H,证明出四边形ACHB是矩形.16、5cm【分析】先求出BF、CF的长,利用勾股定理列出关于EF的方程,即可解决问题.【详解】∵四边形ABCD为矩形,∴∠B=∠C=90°;由题意得:AF=AD=BC=10,ED=EF,设EF=x,则EC=8−x;由勾股定理得:BF2=AF2−AB2=36,∴BF=6,CF=10−6=4;由勾股定理得:x2=42+(8−x)2,解得:x=5,故答案为:5cm.【点睛】该题主要考查了翻折变换及其应用问题;解题的关键是灵活运用勾股定理等几何知识来分析、判断、推理或解答.17、1【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=3:4,然后根据与的周长和为11即可计算出△ABC的周长.【详解】解:∵△ABC与△DEF的面积比为9:16,∴△ABC与△DEF的相似比为3:4,
∴△ABC的周长:△DEF的周长=3:4,∵与的周长和为11,
∴△ABC的周长=×11=1.
故答案是:1.【点睛】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.18、0.1【分析】6批次种子粒数从100粒增加到5000粒时,种子发芽的频率趋近于0.101,所以估计种子发芽的概率为0.101,再精确到0.1,即可得出答案.【详解】根据题干知:当种子粒数5000粒时,种子发芽的频率趋近于0.101,故可以估计种子发芽的概率为0.101,精确到0.1,即为0.1,故本题答案为:0.1.【点睛】本题比较容易,考查利用频率估计概率,大量反复试验下频率稳定值即概率.三、解答题(共66分)19、(1)①50;②;(2);(3)AE的最小值.【解析】(1)①利用等腰三角形的性质即可解决问题.②证明,,推出即可.(2)如图③中,以P为圆心,PB为半径作⊙P.利用圆周角定理证明即可解决问题.(3)因为点E在射线CE上运动,点P在线段AD上运动,所以当点P运动到与点A重合时,AE的值最小,此时AE的最小值.【详解】(1)①如图②中,∵,,∴,②结论:.理由:∵,,∴,∴,∴,∵AE垂直平分线段BC,∴,∴,∵,,∴,∴,∴.故答案为50,.(2)如图③中,以P为圆心,PB为半径作⊙P.∵AD垂直平分线段BC,∴,∴,∵,∴.(3)如图④中,作于H,∵点E在射线CE上运动,点P在线段AD上运动,∴当点P运动到与点A重合时,AE的值最小,此时AE的最小值.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,平行线的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,学会利用辅助圆解决问题,属于中考压轴题.20、(1);(2)【分析】(1)利用因式分解法,即可得出结论;(2)先方程两边平方转化成整式方程,再求一元二次方程的解,最后必须检验.【详解】(1)∵x3+x2-2x=0,∴x(x-1)(x+2)=0∴x=0或x-1=0或x+2=0,∴x1=0,x2=1,x3=-2,故答案为1,-2;;(2),()给方程两边平方得:解得:,(不合题意舍去),∴是原方程的解;【点睛】主要考查了根据材料提供的方法解高次方程,无理方程,理解和掌握材料提供的方法是解题的关键.21、(1)4;(2);(3)抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由90°变为120°.【分析】(1)根据上述结论及直角三角形的性质列出等式,计算出即可;(2)根据上述结论及含120°的等腰三角形的边角关系,列出方程,解出方程即可;(3)根据(1)中结论,计算出m的值,设出平移后的函数解析式,根据(2)中结论,列出等量关系即可解出.【详解】解:(1)由y=ax2+bx+c(a≠0)可知顶点C∵,∴当△ABC为等腰直角三角形时,根据直角三角形斜边上的中线等于斜边的一半可知:=,化简得故答案为:4(2)由y=ax2+bx+c(a≠0)可知顶点C如图,过点C作CD⊥AB交AB于点D,∵∠ACB=120°,∴∠A=30°∵tan30°=,即,又因为,∴化简得故答案为:(3)∵因为向左或向右平移时的度数不变,所以只需将抛物线向上或向下平移使,然后向左或向右平移任意个单位即可.设向上或向下平移后的抛物线的解析式为:,平移后,所以,抛物线向上平移个单位后,向左或向右平移任意个单位都能使得度数由变为.【点睛】本题考查二次函数与几何的综合应用题,难度适中,关键是能够根据特殊三角形的性质列出关系式.22、证明见解析.【分析】由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,继而可利用ASA判定△AOE≌△COF,继而证得OE=OF.【详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.23、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.24、(1)证明见解析;(2)【解析】分析:(1)根据圆内接四边形的性质得到∠DCE=∠BAD,根据圆周角定理得到∠DCE=∠BAD,证明即可;(2)证明△DCE∽△ACD,根据相似三角形的性质列出比例式,计算即可.详解:(1)证明:∵四边形ABCD是⊙
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全专员面试题及答案
- 2025年工业互联网平台IPv6技术升级下的工业设备智能升级报告
- 直播行业规范化趋势下的商业模式创新与平台内容生态建设报告001
- 安全监察法试题及答案
- 安全管理笔试题及答案
- 聚焦2025年:乡村振兴人才培育与农村产业发展规划研究报告001
- 中国发达城市航拍课件
- 中国加油演讲课件
- 2025年广东省茂名电白区七校联考八下英语期中统考模拟试题含答案
- VATS纵膈肿瘤切除术
- pc构件吊装安全专项施工方案
- 2025万家寨水务控股集团所属企业校园招聘82人笔试参考题库附带答案详解
- 2024年贵州省纳雍县事业单位公开招聘中小学教师35名笔试题带答案
- 采购管理 关于印发《中国联通采购管理办法》的通知学习资料
- 正畸器械知识培训课件
- 2025年师德师风知识竞赛题库(含参考答案)
- 安装仓库灯具协议书
- 河道养护工作总结
- 2025年中质协注册质量经理认证考试题库大全(含答案)
- 电缆敷设施工方案及安全措施完整
- 南京科远KD200变频器使用手册
评论
0/150
提交评论