版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.2018年某市初中学业水平实验操作考试,要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是().A. B. C. D.2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元 C.支出80元 D.收入80元3.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响.在《九章算术》中有很多名题,下面就是其中的一道.原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,为的直径,弦于点.寸,寸,则可得直径的长为()A.13寸 B.26寸C.18寸 D.24寸4.如图,从一张腰长为,顶角为的等腰三角形铁皮中剪出一个最大的扇形,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A. B. C. D.5.若反比例函数的图像经过点,则下列各点在该函数图像上的为()A. B. C. D.6.下列图形中,是中心对称的图形的是()A.直角三角形 B.等边三角形 C.平行四边形 D.正五边形7.连接对角线相等的任意四边形各边中点得到的新四边形的形状是()A.正方形 B.菱形 C.矩形 D.平行四边形8.反比例函数图象上的两点为,且,则下列表达式成立的是()A. B. C. D.不能确定9.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.610.二次函数y=3(x–2)2–5与y轴交点坐标为()A.(0,2) B.(0,–5) C.(0,7) D.(0,3)11.如图,在矩形中,,,以为直径作.将矩形绕点旋转,使所得矩形的边与相切,切点为,边与相交于点,则的长为()A.2.5 B.1.5 C.3 D.412.如图,二次函数的图象经过点,下列说法正确的是()A. B. C. D.图象的对称轴是直线二、填空题(每题4分,共24分)13.小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是_________.14.如图,在平面直角坐标系中,抛物线与轴的正半轴相交于点,其顶点为,将这条抛物线绕点旋转后得到的抛物线与轴的负半轴相交于点,其顶点为,连接,,,,则四边形的面积为__________;15.如图,双曲线经过斜边的中点,与直角边交于点.过点作于点,连接,则的面积是__________.16.一元二次方程的根是.17.如图,扇形OAB,∠AOB=90,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的面积比是.18.函数中自变量x的取值范围是________.三、解答题(共78分)19.(8分)请完成下面的几何探究过程:(1)观察填空如图1,在Rt△ABC中,∠C=90°,AC=BC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°得到线段CE,连DE,BE,则①∠CBE的度数为____________;②当BE=____________时,四边形CDBE为正方形.(2)探究证明如图2,在Rt△ABC中,∠C=90°,BC=2AC=4,点D为斜边AB上一动点(不与点A,B重合),把线段CD绕点C顺时针旋转90°后并延长为原来的两倍得到线段CE,连DE,BE则:①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形(3)拓展延伸如图2,在点D的运动过程中,若△BCD恰好为等腰三角形,请直接写出此时AD的长.20.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?21.(8分)如图,在平行四边形ABCD中,E为AD边上一点,BE平分∠ABC,连接CE,已知DE=6,CE=8,AE=1.(1)求AB的长;(2)求平行四边形ABCD的面积;(3)求cos∠AEB.22.(10分)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:每个大于2的偶数都可以表示为两个素数的和,如16=3+1.(1)若从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是_______;(2)若从7,11,19,23中随机抽取1个素数,再从余下的3个数字中随机抽取1个素数,用面树状图或列表的方法求抽到的两个素数之和大于等于30的概率,23.(10分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?24.(10分)若,且2a-b+3c=21.试求a∶b∶c.25.(12分)在边长为1的小正方形网格中,的顶点均在格点上,将绕点逆时针旋转,得到,请画出.26.某运动会期间,甲、乙、丙三位同学参加乒乓球单打比赛,用抽签的方式确定第一场比赛的人选.(1)若已确定甲参加第一次比赛,求另一位选手恰好是乙同学的概率;(2)用画树状图或列表的方法,写出参加第一场比赛选手的所有可能,并求选中乙、丙两位同学参加第一场比赛的概率.
参考答案一、选择题(每题4分,共48分)1、D【分析】直接利用树状图法列举出所有的可能,进而利用概率公式求出答案.【详解】解:如图所示:一共有9种可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是:,故选D.【点睛】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.2、C【解析】试题分析:“+”表示收入,“—”表示支出,则—80元表示支出80元.考点:相反意义的量3、B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD的长.【详解】连接OA,由垂径定理可知,点E是弦AB的中点,设半径为r,由勾股定理得,即解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.4、A【分析】根据等腰三角形的性质得到的长,再利用弧长公式计算出弧的长,设圆锥的底面圆半径为,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到.【详解】过作于,,,,弧的长,设圆锥的底面圆的半径为,则,解得.故选A.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5、C【分析】将点代入求出反比例函数的解析式,再对各项进行判断即可.【详解】将点代入得解得∴只有点在该函数图象上故答案为:C.【点睛】本题考查了反比例函数的问题,掌握反比例函数的性质以及应用是解题的关键.6、C【分析】根据中心对称的定义,结合所给图形即可作出判断.【详解】解:A.直角三角形不是中心对称图象,故本选项错误;B.等边三角形不是中心对称图象,故本选项错误;C.平行四边形是中心对称图象,故本选项正确;D.正五边形不是中心对称图象,故本选项错误.故选:C.【点睛】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.7、B【分析】先根据三角形的中位线定理和平行四边形的判定定理证得此四边形为平行四边形,再判断一组邻边相等,所以根据菱形的定义可知该中点四边形是菱形.【详解】如图所示,连接AC、BD,
∵E、F、G、H分别为各边的中点,
∴HG、EF分别为△ACD与△ABC的中位线,
∴HG∥AC∥EF,,
∴四边形EFGH是平行四边形;同理可得,,∵AC=BD,
∴EH=GH,
∴四边形EFGH是菱形;
故选:B.【点睛】本题考查的是三角形中位线定理,即三角形的中位线平行于底边且等于底边的一半.解答此题的关键是根据题意画出图形,利用数形结合思想解答.8、D【分析】根据反比例函数图象上点的坐标特征得到,,然后分类讨论:0<<得到;当<0<得到<;当<<0得到.【详解】∵反比例函数图象上的两点为,,∴,∴,,当0<<,;当<0<,<;当<<0,;故选D.【点睛】本题主要考查了反比例函数图象上点的坐标特征,掌握反比例函数图象上点的坐标特征是解题的关键.9、C【解析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.10、C【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11、D【分析】连接OE,延长EO交CD于点G,作于点H,通过旋转的性质和添加的辅助线得到四边形和都是矩形,利用勾股定理求出的长度,最后利用垂径定理即可得出答案.【详解】连接OE,延长EO交CD于点G,作于点H则∵矩形ABCD绕点C旋转所得矩形为∴四边形和都是矩形,∵四边形都是矩形即故选:D.【点睛】本题主要考查矩形的性质,勾股定理及垂径定理,掌握矩形的性质,勾股定理及垂径定理是解题的关键.12、D【分析】根据抛物线与y轴交点的位置即可判断A选项;根据抛物线与x轴有两个交点即可判断B选项;由图象可知,当x=1时,图象在x轴的下方可知,故C错误;根据图象经过点两点,即可得出对称轴为直线.【详解】解:A、由图可知,抛物线交于y轴负半轴,所以c<0,故A错误;B、由图可知,抛物线与x轴有两个交点,则,故B错误;C、由图象可知,当x=1时,图象在x轴的下方,则,故C错误;D、因为图象经过点两点,所以抛物线的对称轴为直线,故D正确;故选:D.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是掌握二次函数的图象和性质.二、填空题(每题4分,共24分)13、(3.76,0)【分析】根据相似三角形的判定和性质即可得到结论.【详解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.1,∴DE=3.76,∴E(3.76,0).故答案为:(3.76,0).【点睛】本题考查了中心投影,相似三角形的判定和性质,正确的识别图形是解题的关键.14、32【分析】利用抛物线的解析式算出M的坐标和A的坐标,根据对称算出B和N的坐标,再利用两个三角形的面积公式计算和即可.【详解】∵,∴M(2,-4),令,解得x1=0,x2=4,∴A(0,4),∵B,N分别关于原点O的对称点是A,M,∴B(-4,-0),N(-2,4),∴AB=8,∴四边形AMBN的面积为:2S△ABM=,故答案为:32.【点睛】本题考查二次函数的性质,关键在于利用对称性得出坐标点.15、1【分析】先证明△OED∽△OAB,得出相似比=,再根据反比例函数中k的几何意义得出S△AOC=S△DOE=×2=1,从而可得出△AOB的面积,最后由S△OBC=S△AOB-S△AOC可得出结果.【详解】解:∵∠OAB=90°,DE⊥OA,
∴DE∥AB,∴△OED∽△OAB,
∵D为OB的中点D,,∴.∵双曲线的解析式是y=,
∴S△AOC=S△DOE=×2=1,
∴S△AOB=4S△DOE=4,
∴S△OBC=S△AOB-S△AOC=1,
故答案为:1.【点睛】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点.16、【解析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.17、【详解】依题意连接OC则P在OC上,连接PF,PE则PF⊥OA,PE⊥OB,由切线长定理可知四边形OEPF为正方形,且其边长即⊙P的半径(设⊙P的半径为r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴18、x≥-1且x≠1.【分析】根据二次根式的被开方数非负和分式的分母不为0可得关于x的不等式组,解不等式组即可求得答案.【详解】解:根据题意,得,解得x≥-1且x≠1.故答案为x≥-1且x≠1.【点睛】本题考查了二次根式有意义的条件和分式有意义的条件,难度不大,属于基础题型.三、解答题(共78分)19、(1)①45°,②;(2)①,理由见解析,②见解析;(3)或【分析】(1)①由等腰直角三角形的性质得出,由旋转的性质得:,,证明,即可得出结果;②由①得,求出,作于,则是等腰直角三角形,证出是等腰直角三角形,求出,证出四边形是矩形,再由垂直平分线的性质得出,即可得出结论;(2)①证明,即可得出;②由垂直的定义得出,由相似三角形的性质得出,即可得出结论;(3)存在两种情况:①当时,证出,由勾股定理求出,即可得出结果;②当时,得出即可.【详解】解:(1)①,,,由旋转的性质得:,,在和中,,,;故答案为:;②当时,四边形是正方形;理由如下:由①得:,,作于,如图所示:则是等腰直角三角形,,,,,是等腰直角三角形,,,又,四边形是矩形,又垂直平分,,四边形是正方形;故答案为:;(2)①,理由如下:由旋转的性质得:,,,,,;②,,由①得:,,又,四边形是矩形;(3)在点的运动过程中,若恰好为等腰三角形,存在两种情况:①当时,则,,,,,,,,;②当时,;综上所述:若恰好为等腰三角形,此时的长为或.【点睛】本题是四边形综合题目,考查了旋转的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、矩形的判定、正方形的判定、相似三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握旋转的性质,证明三角形相似是解决问题的关键,注意分类讨论.20、第二个月的单价应是70元.【解析】试题分析:设第二个月降价元,则由题意可得第二个月的销售单价为元,销售量为件,由此可得第二个月的销售额为元,结合第一个月的销售额为元和第三个月的销售额为元及总的利润为9000元,即可列出方程,解方程即可求得第二个月的销售单价.试题解析:设第二个月的降价应是元,根据题意,得:80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9000,整理,得x2-20x+100=0,解得x1=x2=10,当x=10时,80-x=70>50,符合题意.答:第二个月的单价应是70元.点睛:这是一道有关商品销售的实际问题,解题时需注意以下几点:(1)进货成本=商品进货单价×进货数量;(2)销售金额=商品销售单价×销售量;(3)利润=销售金额-进货成本;(4)若商品售价每降价元,销量增加件,则当售价降低元时,销量增加:件.21、(1)1;(2)128;(3).【分析】(1)由平行四边形的性质及角平分线的定义可得出AB=AE,进而再利用题中数据即可求解结论;(2)易证CED为直角三角形,则CE⊥AD,基础CE为平行四边形的高,利用平行四边形的面积公式计算即可;(3)易证∠BCE=90°,求cos∠AEB的值可转化为求cos∠EBC的值,利用勾股定理求出BE的长即可.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,(2)∵四边形ABCD是平行四边形.∴CD=AB=1,在CED中,CD=1,DE=6,CE=8,∴ED2+CE2=CD2,∴∠CED=90°.∴CE⊥AD,∴平行四边形ABCD的面积=AD•CE=(1+6)×8=128;(3)∵四边形ABCD是平行四边形.∴BC∥AD,BC=AD,∴∠BCE=∠CED=90°,AD=16,∴RtBCE中,BE==8,∴cos∠AEB=cos∠EBC===.【点睛】本题主要考查平行四边形的性质、平行四边形的面积公式运用、解直角三角形的有关知识及角平分线的性质等问题,应熟练掌握.22、(1);(2)【分析】(1)直接根据概率公式计算可得;
(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得.【详解】解:(1)因为7,11,19,23共有4个数,其中素数7只有1个,
所以从7,11,19,23中随机抽取1个素数,则抽到的素数是7的概率是,
故答案为.(2)由题意画树状图如下:由树状图可知,共有12种等可能的结果,其中抽到的两个素数之和大于等于30的结果有8种,故所求概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23、(1)(2)当x=52时,w有最大值为2640.【分析】(1)售单价每上涨1元,每天销售量减少10本,则售单价每上涨(x-44)元,每天销售量减少10(x-44)本,所以y=300-10(x-44),然后利用销售单价不低于44元,且获利不高于30%确定x的范围;
(2)利用利用每本的利润乘以销售量得到总利润得到w=(x-40)(-10x+740),再把它变形为顶点式,然后利用二次函数的性质得到x=52时w最大,从而计算出x=52时对应的w的值即可.【详解】(1)由题意得:y=300-10(x-44)=-10x+740,
每本进价40元,且获利不高于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中山火炬职业技术学院《建筑识图与制图》2023-2024学年第一学期期末试卷
- 郑州职业技术学院《检测技术与信号处理》2023-2024学年第一学期期末试卷
- 长沙卫生职业学院《信息安全理论与技术》2023-2024学年第一学期期末试卷
- 云南农业职业技术学院《中外体育文学》2023-2024学年第一学期期末试卷
- 海洋养殖科技革新模板
- 职业导论-房地产经纪人《职业导论》名师预测卷2
- 人教版四年级数学下册第七单元综合卷(含答案)
- 2024-2025学年吉林省吉林市蛟河实验中学高二(上)期末数学试卷(含答案)
- 烟台幼儿师范高等专科学校《艺术家与风格》2023-2024学年第一学期期末试卷
- 二零二五年度高端餐饮企业雇佣司机专业服务合同3篇
- 《中华人民共和国机动车驾驶人科目一考试题库》
- 2024年VB程序设计:从入门到精通
- 2024年故宫文化展览计划:课件创意与呈现
- 公共交通乘客投诉管理制度
- 不锈钢伸缩缝安装施工合同
- 水土保持监理总结报告
- Android移动开发基础案例教程(第2版)完整全套教学课件
- 医保DRGDIP付费基础知识医院内培训课件
- 专题12 工艺流程综合题- 三年(2022-2024)高考化学真题分类汇编(全国版)
- DB32T-经成人中心静脉通路装置采血技术规范
- TDALN 033-2024 学生饮用奶安全规范入校管理标准
评论
0/150
提交评论